

1

FEB V2 Technical Documentation
Draft v0.12

Table of Contents
Change log ... 3

Introduction ... 5

Overview.. 6

FEB environment ... 6

GBTX .. 6

GBT SCA ... 6

PETIROC ... 6

FPGAs ... 6

FEB simplified diagram .. 7

Firmware overview .. 8

Control and data flows .. 8

Focus on the central FPGA .. 9

GBT communication .. 10

GBT frame .. 10

Header field (H) ... 10

Internal Control field (IC) ... 10

External Control field (EC) ... 10

Data field (D) ... 10

Forward Error Correction field (FEC) ... 11

GBT Frame fields source/destination recap .. 12

FPGA communication Frame Format .. 13

Downlink GBT Frame ... 13

Uplink GBT Frame .. 16

TDC module ... 19

Time reference .. 19

Data processing ... 19

Calibration ... 19

FastControl and orbit management .. 20

FPGA Slow Control structure ... 21

FPGA General Control.. 21

PETIROC Control .. 22

PETIROC Slow control loading block diagram ... 23

TDC Control ... 24

TDC LUT Readout ... 24

Serial Flash Control .. 25

CSR interface ... 25

Memory interface .. 28

Remote update controller ... 29

TDC Timestamp correction module .. 31

Data Path Control .. 33

TDC Channels Readout Module ... 34

Data Concentrator Module ... 37

GBT-SCA features .. 39

2

GPIO ... 39

JTAG chain ... 40

SPI Interface .. 40

I²C Buses .. 41

I²C FPGAs Bus... 42

I²C Temperature Sensors Bus .. 43

ADC .. 44

Board power management recap ... 44

Clocks ... 45

External clocks ... 45

Main system clock - 40MHz ... 45

TDC calibration clock – 11MHz .. 45

eLink clocks - 40Mhz (Middle FPGA only) ... 45

Internal clocks ... 45

TDC Clock - 400MHz .. 45

Main Slow control and Data bus clock - 120MHz .. 45

GXB reference clock - 120MHz .. 45

Fast control clock - 80MHz (Middle FPGA only) .. 45

FEB power management ... 46

Board power management overview .. 46

2V power path details ... 46

4V power path details ... 47

Power supply estimation ... 47

FEBv2_r3 Data channel mapping .. 48

PETIROC configuration reference .. 49

APPENDIX: Outdated material (removed features, previous board revisions…) 55

Quick start guide ... 55

Installation ... 55

Configuring SCA ... 55

(Optional step) Load a new firmware in FPGAs/EEPROM ... 59

FPGAs Slow control communication check ... 61

TDC control .. 61

PETIROC configuration .. 62

FEBv2_r2 detailed boot sequence ... 64

FEBv2_r2 Data channel mapping .. 71

PETIROC configuration reference .. 72

PETIROC channel auto-reset module (OLD FW ONLY) .. 78

PETIROC pins ... 78

State machine sequencing .. 78

3

Change log
March 19th, 2021 -> Document version 0.3
Add a change log, update slow control features, add a lot of raw information, add a Quickstart Guide
July 28th, 2021 -> Document version 0.4 (Firmware revision ID = 1.0)
New BC0 mechanism (signal used as time reference for every other channels)
New downlink frame header FastControl signals for orbit control (FlushDataPath, MuteROCChannels)
Add GBT Rx/TxDataValid flags management
New slow control features (revisionID, PETIROC periodic reconfig and BitflipCounter, Injection Mode)
October 1st, 2021 -> Document version 0.5 (Firmware revision ID = 1.2)
Firmware v1.1 -> Add PETIROC 2A/2B/2C compatibility (modifications of PETIROC Slow Control slave)
Update of the PETIROC configuration registers list
Firmware v1.2 -> Add control of BC0 features (modifications of TDC Slow Control slave)
November 12th, 2021 -> Document version 0.6 (Firmware revision ID = 1.9)
Firmware v1.3 -> Add 10ms delay between each FPGA reset deassertion (to reduce current spikes)
Firmware v1.7 -> Flash interface and Remote update controller implemented (allows to update the
application firmware for each of the 3 FPGAs through the GBT frames).
For reliability purpose the flash now contains 2 firmwares (1 golden firmware, 1 application
firmware).
Firmware v1.8 -> Add flash burst read management.
Increase delay between FPGAs for reset assertion/deassertion to 50ms.
Firmware v1.9 -> Fix the BC0 timestamp correction when BC0 timestamp is dropped.
Add channel timestamp correction feature.
January 27th, 2021 -> Document version 0.7 (Firmware revision ID = 1.9)
Add details on the Flash interface (to update Application Firmware through the optical link) and the
Remote Update Controller (to jump from the Golden Firmware to the Application Firmware).
July 19th, 2022 -> Document version 0.8 (Firmware revision ID = 3.2)
Update PETIROC parameters table to match with CMS database.
Update on the uplink data frame formats (includes new strip clustering features).
Firmware v2.0 -> Add a new Slow Control Slave (Data Path Control registers), introducing a new
feature to configure an additional delay for data from Middle FPGA (latency compensation).
Firmware v3.0 -> TDC Data Readout and local Slow Control Buses are now working at 120MHz (clock
100MHz is not used anymore). This implies a modification of the Data Counter Time Window
definition (LSB is now 8.33ns instead of 10ns). Add miscellaneous Data Filtering, Strip Clustering and
Latency Regulation features.
Firmware v3.1 -> Add an independent pair filtering control for each channel pair (16 enable bits, 16
diff Max and 16 diff Min).
Firmware v3.2 -> Add the possibility to remove isolated channel data on FPGA basis.
Change the Clustering Strip Numbering to better match the PCB strip numbering.
Change the channel/strip readout priority order (channels from even strip first).
November 17th, 2022 -> Document version 0.9 (Firmware revision ID = 3.6)
Change in uplink frame header format (add loopback fields for Resync and BC0 signals in uplink GBT
frame).
July 26th, 2023 -> Document version 0.11 (Firmware revision ID = 4.3)
FW v3.7 -> Fix a problem with the FPGA INIT_DONE configuration pin.
FW v3.8 -> Introduce separated reset for each FPGA (using the SCA_Spare(0) GPIOs).
Fix the fast control resetScPath behavior.
FW v3.10 -> Use the internal PLL generated clock as refclk for the GXB module (constant latency).
FW v3.11 -> Optimization of the communication latency between the middle FPGA and the other
ones.
FW v3.12 -> Add registers to read the FPGA Chip ID.
Fix the toggling behavior of debug patterns for both data path and sc path (120MHz).

4

FW v3.14 -> Fix a pipeline synchronization problem in the pair filtering module.
Update the Datapath Control Registers values.
FW v4.0 -> Remove backward compatibility with PETIROC 2A/2B.
Remove PETIROC_CHANNEL_RESET SM in FPGA.
Remove the common soft_reset (SCA GPIO 10).
FPGAs soft_reset are now exclusively independent (SCA GPIO 21, 26, 31).
VAL_EVT of a PETIROC is kept low during ASIC reset or configuration to prevent output toggling.
Remove the features related ROC_MANAGER (registers [4:8] and 13).
FW v4.3 -> Recompile TDC partition for best timing closure (fix the TDC coarse counter problem for
the slowest FPGAs).
May 21st, 2024 -> Document version 0.12 (FEBv2r3, Firmware revision ID = 4.8)
Update the documentation to include the FEBv2r3 modifications.
FW v4.4 -> Add a byte ordering detection and correction for links between FPGAs (can correct a
problem caused by a SEU).
FW v4.5 -> Register Resync_out, BC0_out and trig_ext output signals in the IO block (this increases
the Resync/BC0 to trig_ext latency but reduces the skew between top and bottom injection).
FW v4.6 -> Add Fast-Status flags (header of uplink GBT frame) to tag the loss of data (TDC readout
overflow and output frame overflow).
Extend channel dead time counter to 6 bits.
Add a mechanism to mute the PETIROC in case of TDC readout overflow for 1 FPGA.
The val_evt signal is now registered in IO block of the FPGA before to be sent to PETIROC.
FW v4.7 -> Add a PETIROC retriggering mitigation feature (controllable with datapath control
registers).
FW v4.8 -> Firmware regeneration to prevent timing issues at worst corner (TDC timestamp observed
for one FPGA with the previous version).

5

Introduction
The goal of this document is to provide information about the Front-End Board V2. This document is

currently a draft and modifications/additions could happen as new features are implemented in the

firmware.

6

Overview

FEB environment
This part presents the different devices located on the FEB.

GBTX
This ASIC manages the decoding/encoding of the GBT frames, it ensures the full duplex communication

between the backend and the SCA/FPGAs.

Vocabulary:

The transmission path oriented from the backend to the FEB is called the downlink (typically the slow

control requests).

The transmission path oriented from the FEB to the backend is called the uplink (typically acquired

data and slow control answers).

GBT SCA
This ASIC ensures the board slow control management. It provides I²C buses, JTAG, SPI interface, GPIOs

and ADCs to monitor and control different features of the board.

PETIROC
This ASIC reads the strips and digitizes incoming signal, producing trigger signals to the FPGAs.

In our application, it can be seen as a 1-bit ADC.

There are 6 PETIROCs on the FEB, each of these is managing 16 input channels.

FPGAs
The main task of the three FPGAs of the board is to accurately timestamping the trigger signals received

from the PETIROC ASICs. For this purpose, they all three include a multichannel TDC (34 channels).

Each FPGAs has to manage the slow control configuration/monitoring and the fast command

generation for its 2 PETIROCs.

In addition, the central FPGA must concentrate data from the two other FPGAs, and format it to create

the data payload of the uplink GBT frame.

7

FEB simplified diagram

8

Firmware overview
This part presents how the control and data flows are managed in the firmware of the three FPGAs.

Control and data flows

9

Focus on the central FPGA

10

GBT communication
The main communication path between backend and FEB is ensured by a bidirectional optical link. This

link data management relies on the CERN GBT solution:

• GBT FPGA on the backend side

• GBTX ASIC on the FEB side

https://espace.cern.ch/GBT-Project/GBTX/Manuals/gbtxManual.pdf

Communication between these two points is based on GBT frames.

GBT frame
The 120 bits GBT frame is transmitted during a single LHC bunch crossing interval (25 ns), resulting in

a line rate of 4.8 Gb/s.

Header field (H)
A 4 bits header field is transmitted at the beginning of each frame. This field is required to synchronize

the data stream at the frame level. Moreover, once the synchronization is done and the data link is up,

this field allows to forward a “data valid” flag from the transmitter side to the receiver side.

Internal Control field (IC)
The 2 bits Internal Control (IC) field is used to control and monitor the GBTX operation. It implements

an 80 Mb/s communication link with the GBTX ASIC.

External Control field (EC)
The 2 bits External Control (EC) field is used to implement a fixed bandwidth (80 Mbps) port for the

slow control communication channel with the GBT-SCA chip.

Data field (D)
The 80 bits data field is used for generic transmission of data, having an associated bandwidth of

3.2Gbps. On the FEB side, this payload is transmitted/received by the central FPGA via the E-Links. Data

transmitted has fixed latency in both directions enabling its efficient use for trigger information and

timing control.

11

Forward Error Correction field (FEC)
The 32 bits FEC field is used to protect all the other fields in the frame against transmission errors due

to link noise and single event upsets. Based on this field, the frame receiver can correct up to 16

consecutive corrupted bits.

GBT solution allows to increase the uplink useful bandwidth by disabling the Forward Error Correction

(FEC) feature and using the corresponding 32 bits field to transmit extra data. Uplink data field

therefore has 112 bits, this corresponds to a 4.48 Gb/s useful bandwidth (against to the 3.2 Gbps GBT

standard).

It is important to keep in mind there is an asymmetric useful bandwidth between downlink and uplink.

12

GBT Frame fields source/destination recap
The following figure details the source and destination for each GBT frame field for both downlink and

uplink communication.

13

FPGA communication Frame Format
This communication channel uses the GBT frame data field.

At power-on or after a Reset, the FEB FPGA firmware does not interpret (ignores) all the received

frames until the first assertion of the RxDataValid flag provided by the GBTx. This flag is generated by

the GBTx based on the GBT frame header which is created by the GBT FPGA (it corresponds to the

TxDataValid of the backend board). This is important for the backend to assert this flag before starting

the communication with the FEB FPGAs.

Once the FEB is ready to accept and send data AND the RxDataValid flag assertion is detected, the

FPGA rises the TxDataValid flag of the GBTx. This can be detected on the backend side by checking the

RxDataValid flag status from the GBT FPGA module. This is providing an acknowledge for the backend

to confirm the link between the backend FPGA and the FEB middle FPGA is established.

The slow control communication is based on 16bits registers addressed on 16bits.

Downlink GBT Frame
The downlink GBT frame has a useful data payload of 80 bits (5 groups of 16 bits), which is forwarded

to the central FPGA.

Downlink communication main goal is to carry 2 types of information: the fast control and the slow

control requests.

FastControl

A downlink frame has a 16 bits header dedicated to the fast control. These bits are always interpreted

and can trigger different actions performed within a fixed latency.

Resync/BC0

These bits both allow to generate a calibration trigger on a dedicated TDC channel for the three FPGAs

(through three temporally balanced lines). When a BC0 signal is received and processed by the TDC

channel of a FPGA, the associated timestamp is used as a time reference for all channels of this FPGA

(for each channel, the returned timestamp value is the difference between the last BC0 reception time

and the trigger reception time).

ResetSCPath

This bit is intended to reset the state machines and FIFOs involved in the GBT communication slow

control path (on the three FPGAs), this could be useful in case of Req/Data desynchronization (due to

an overflow).

FlushDataPath

This bit allows to flush the data pipeline of the three FPGAs of the FEB. Upon reception of this active

high control, all the FIFOs and buffers containing TDC data are reset. This feature allows to ensure

there is no remaining data at the end of the LHC orbit gap. It removes all ambiguity for the backend

during the orbit tagging as this makes impossible to have TDC data from different orbits mixed in the

FEB pipeline at the same time.

Slow Control Request Frame

Fied Name Resync BC0 ResetSCPath FlushDataPath MuteROCChannels MiscCtrl FPGASel RSVD WrReq BurstAdditionnalWords Address WrData0 WrData1

Field length 1 1 1 1 1 8 3 7 1 8 16 16 16

GBT Frame Group G2 G1 G0

Slow Control Payload Frame

Fied Name Resync BC0 ResetSCPath FlushDataPath MuteROCChannels MiscCtrl FPGASel WrData(N+1) WrData(N+2) WrData(N+3)

Field length 1 1 1 1 1 8 3 16 16 16

GBT Frame Group G2 G1 G0

Frame Header (Fast control)

G4

Slow Control Payload

WrData(N)

16

G3

Frame Header (Fast control) Slow Control Request Information Slow Control Payload

G4 G3

14

MuteROCChannels

This bit commands an input dedicated input pin (Val_Evt) of the 6 PETIROC which allows to mute every

of their channels (while this bit is active, it is preventing the emission of new triggers from the ASICs).

This feature is useful during the orbit gap, when there is a need for masking the generation of non-

interesting data while continuing to process and send previously generated data that are already in

the FEB FPGAs data pipeline.

MiscCtrl

This is a placeholder for the fast control bits that are not allocated yet.

These bits can be used as synchronous reset for specific part for each of the three FPGAs (TDCs, high

speed links connection between the FPGAs, ...), or to synchronize internal counters.

This selection is not fixed yet.

FPGASel

This field allows the firmware to know if any payload (request or data) is present in the frame and to

which FPGA(s) it is destined. To transmit the slow control request/data to a given FPGA, the

corresponding bit must be set at '1' (this field is not a FPGA address, there is an enable bit for each of

the three FPGAs).

Examples:

• "000" -> No slow control forward (empty frame).

• "001" -> Send the slow control payload to FPGA 0 only.

• "110" -> Send the slow control payload to FPGA 1 and FPGA 2.

• "111" -> Broadcast the slow control payload to the three FPGAs.

15

SlowControl

If at least one bit of the FPGASel field is high, the slow control part of the frame is forwarded to the

slow control bus master of the concerned FPGA(s).

A slow control transaction must always begin by a request frame which defines:

• If it is either a read or a write transaction

• If it is either a single word or a burst transaction

• The base address of the transaction

In the case of a write transaction, the value to write is expected to be next to the request information.

In case of a burst write transaction of more than 2 words, the words to write will span over many

frames. Unlike the request frame, the following frames have a 4 words maximum capacity.

The slow control path can accept up to 256 words burst request (for both read and write operation).

Note on request/payload frame:

The differentiation between a slow control "request frame" and a slow control "payload frame" is

made by the internal state machine which decode the slow control frame in each FPGA:

The very first slow control frame sent to a FPGA is assumed to be a Request one.

If this is a write request, "BurstAdditionnalWords" field is decoded to process the number of remaining

frames to get all the necessary data to write (= the number of following frames related to the request).

When all these frames are received, the next frame is assumed to be a Request one.

Example:

You want to write 4 words (0x0A, 0x0B, 0x0C, 0x0D) respectively in registers 0x0010, 0x0011, 0x0012

and 0x0013 in the FPGA 0.

1st Frame (request frame): FPGASel = "001"; WrReq=1, BurstAdditionnalWords=0x03,

Address=0x0010, WrData0=0x0A, WrData1=0x0B

2nd Frame (payload frame): FPGASel = "001"; WrData(N)=0x0C, WrData(N+1)=0x0D, WrData(N+2)=

XX, WrData(N+3)=XX (The last 32bits of the frame are not interpreted in this case)

After these 2 frames, if another frame is sent to FPGA 0, the frame will be decoded as a request frame

(and it will initiate a new transaction).

In this example the 1st Frame and the 2nd Frame don't have to be consecutive.

It is possible to have an arbitrary long break (pause) between the 2 frames as long as the "FPGASel"

LSB (which refers to the FPGA 0) stays at '0'.

16

Note on BurstAdditionnalWords field:

BurstAdditionnalWords = 0x00 -> Single word read or write operation is requested.

BurstAdditionnalWords = 0x01 -> 2 words operation (the single word + 1 additional word)

…

BurstAdditionnalWords = 0xFF -> 256 words operation (the single word + 255 additional words).

This field value is always equivalent as "total number of words" - 1

Uplink GBT Frame
Thanks to the wide frame mode, the uplink GBT frame has a useful data payload of 112 bits (7 groups

of 16 bits), which is produced and transmitted by the central FPGA.

Uplink communication main goal is to carry three types of information: the fast status information, the

slow control answers to the read requests and the collected data.

The multiplexing of data and slow control frame is based on the very simple rule: "Data always takes

priority over slow control" (the output slow control frames are stored in a FIFO which is read only when

the frame is free of data).

Frame Header (fast status and valid flags)

An uplink frame has a 16 bits header dedicated to the fast status. These bits allow to monitor the state

of the three FPGAs.

Moreover, in this header there are few bits reserved to identify if this is either a data or control (or

nothing) in the payload.

Resync LB/BC0 LB

These two 1bit fields are the loopback of the Resync & BC0 signals extracted from the downlink GBT

frame.

Frame overflow

This flag is raised to ‘1’ when at least one data frame is dropped in the uplink GBT frame queue located

in the middle FPGA after the data concentrator. An overflow occurring here means that too many

timestamps were produced by the 3 FPGAs and therefore the output frame queue hits the maximum

authorized latency.

TDC_Readout_Overflow

This flag is raised to ‘1’ when at least one timestamp is dropped at the TDC readout module of one

FPGA. An overflow occurring here means that too many timestamps were produced by this FPGA and

therefore the TDC readout module hits the maximum authorized latency to send data to the data

concentrator.

RSVD

Placeholder for the remaining status bits.

Resync LoopBack BC0 LoopBack FPGA0 FPGA1 FPGA2

Field length 1 1 1 1 1 1 3 1 2 1 3

GBT Frame Group

Fied Name

Header (status flags)

G4

FC LoopBack TDC_Readout_Overflow
RSVD SCFrame IsStrip RSVD DataValidFrame Overflow

17

SCFrame/DataValid flags

To differentiate DataFrame and Slow control frame, one has to use the SCFrame flag of the header.

If SCFrame = '0':

Possible data frame, check the 3 “DataValid” bits to know if data is present in frame, and eventually

the 2 “IsStrip” bits to know how to correctly reconstruct data.

If SCFrame = '1':

Slow Control frame, check the 6 “DataValid” bits to know where are the slow control reply words to

record.

There is no slow control frame structure for the uplink, only words that are sent in the expected order.

Data Frame

If the SCFrame flag in the header is low but at least one data valid is high, there is data in the payload.

A data unit composed of both positional (FPGA ID, channel address/strip address) and temporal (TDC

generated timestamp) information.

Data Frame in standard mode

The following figure shows the generic data frame format for single channel data.

In this mode, a given piece of data is 32 bits wide and is related to only 1 TDC generated timestamp.

Data Frame in strip clustering mode

The following figure shows the generic data frame format for strip cluster data.

In this mode, a given piece of data is 48 bits wide and is the result of a compression of 2 TDC generated

timestamps (the pair of channels issued from one physical strip).

The strip data is composed of:

• The direct strip channel data (32 bits)

• The difference between the direct strip channel timestamp and the return strip channel

timestamp (16 bits).

Summary of possible data frames

The following figure summarizes every possible frame payload when SCFrame=’0’ (meaning this frame

is not a slow control reply).

Data frame

Fied Name FC LoopBack Overflow RSVD SCFrame IsStrip RSVD DataValid devAddr TDC data devAddr TDC data devAddr TDC data

Field length 2 4 3 1 2 1 3 2 24 2 24 2 24

GBT Frame Group

Header (status flags) TDC Data Standard Payload

chanID chanID chanID

6 6 6

G4 G3 & G2 G1 & G0 G6 & G5

Data frame

Fied Name FC LoopBack Overflow RSVD SCFrame IsStrip RSVD DataValid devAddr TDC data devAddr TDC data

Field length 2 4 3 1 2 1 3 2 24 2 24

GBT Frame Group G1 & G0

Strip0 Diff

16

G6

Header (status flags) TDC Data Strip Payload

stripID stripID

6 6

Strip1 Diff

16

G5G4 G3 & G2

Possible Data Frames FC LoopBack Overflow RSVD SCFrame IsStrip RSVD DataValid

Empty Frame "0" "00" "0" "000"

1 channel data Frame "0" "00" "0" "100" devAddr TDC data

2 channels data Frame "0" "00" "0" "110" devAddr TDC data devAddr TDC data

3 channels data Frame "0" "00" "0" "111" devAddr TDC data devAddr TDC data devAddr TDC data

1 Strip Frame "0" "10" "0" "100" devAddr TDC data

2 Strips Frame "0" "11" "0" "110" devAddr TDC data devAddr TDC data

Hybrid Frame "0" "10" "0" "110" devAddr TDC data devAddr TDC data

Hybrid Frame "0" "01" "0" "110" devAddr TDC data devAddr TDC data

GBT Frame Group

stripID Strip0 Diff XXXXXX

stripID chanID Strip0 Diff XXX

chanID stripID XXX Strip1 Diff

Strip1 DiffstripID

G4 G3 & G2 G1 & G0 G6 G5

Unrelated to Data Frame

Payload

chanID

stripID Strip0 Diff

Header (status flags)
Frame Data Payload

chanID

"000000…0000001"

XXX

chanID

chanID

chanID chanID

XXX

18

Note that Strip Frames and Hybrid Frames can only appears when the Strip Clustering feature is

enabled in the Middle FPGA (see the Data Path Control section for more information).

SlowControl Frame

If the SCFrame flag in the header is high and at least one data valid is high, there is a read request

answer in the payload.

As the slow control answer and the data from the three FPGAs are not concentrated in the same way,

this frame format is slightly different. Each FPGA has a reserved field of 2 words to send the slow

control read request answers.

Slow control frame

Source FPGA

Fied Name FC LoopBack Overflow RSVD SCFrame

Field length 2 4 3 1

GBT Frame Group

RdData(N+1)

G4 G3 G2 G1 G0

RdData(N)

16 16

G6 G5

6 16 16 16 16

DataValid RdData(N) RdData(N+1) RdData(N) RdData(N+1)

Header (status flags)
Slow Control Data Payload

FPGA0 FPGA1 FPGA2

19

TDC module
The main goal of this system is to perform time tagging of the trigger signal coming from the PETIROC.

To accomplish this task, each FPGA firmware hosts a TDC module with 34 independent channels. 32 of

these channels are connected to PETIROC output triggers and the 2 remaining channels are connected

to the Resync and BC0 loopbacks (signals generated by the master FPGA upon reception of a fast

control command).

Time reference
When a BC0 signal (provided by FastControl) is received and processed by the TDC channel of a FPGA,

the associated timestamp is used as a time reference for all channels of this FPGA (for each channel,

the returned timestamp value is the difference between the last BC0 reception time and the trigger

reception time).

Data processing
The synchronous time tagging part of this module is working with a 400MHz clock (derived from the

40MHz clock through an internal pll).

When a trigger rising edge is detected for a channel, the module records the value of an internal

counter (counting at 400MHz) which gives the coarse time (2.5ns step). Thanks to a second part of the

circuit based on a delay chain, this module can also process a fine time on 8 bits. This fine time is

corresponding to the fractional part of the coarse time step, this explains how the system can provide

TDC data with a LSB around 10ps (=2.5ns/256).

Once the calculation is over, the created timestamp is corrected by the time reference (the last BC0

timestamp is subtracted from the channel timestamp) and is forwarded to the readout module, which

goals is to concentrate TDC data from every channel.

Calibration
Before utilization, TDC channels have to be correctly calibrated. It consists of the creation of a LUT

(Look Up Table) for each channel. These LUTs store information about the non-linearity corrections of

their delay line. The LUT building is done by the TDC itself (corrections cannot be written from the

outside) using a dedicated calibration clock. Calibration control/status for all channels are accessible

by the slow control registers of the TDC Control slave.

While a calibration procedure is automatically performed inside the FPGAs at start-up (right after the

firmware configuration step), it can be useful to manually relaunch the calibration procedure once the

board is hot to achieve better performances.

20

FastControl and orbit management
The orbit sequencing, numbering and the data orbit tagging must be managed by the backend system.

A LHC orbit can be divided in 2 parts:

• The useful part where the input data must be recorded and processed

• The orbit gap where the input data can be dropped

This orbit gap can then be used by the backend to split the received data into different orbits (orbit

tagging) with no ambiguity.

To achieve this task, some FEB features can be controlled by the backend using the FastControl bits of

the downlink frame header. The effects of these controls have a constant deterministic latency.

The following chronogram is a proposal of how the backend can perform the orbit sequencing by

commanding the FlushDataPath, MuteROCChannels and BC0 FastControl bits of the downlink frame.

During the useful part, the 3 controls remain at low level, the FEB continuously generate, process and

send data to the backend board.

As soon as the orbit gap begins, the backend board can mute the PETIROCs, preventing them to

generate new data. The already collected data processing and sending continue, progressively

decreasing the amount of data stored in the buffers.

Near the end of the orbit gap, a flush command needs to be asserted in case of remaining data in the

FEB pipeline (this allows to remove every ambiguity as it makes impossible for 2 data from different

orbits to be in the FEB at the same time).

After a pause, a BC0 signal can be send to reset the base timestamp of every TDC channels (for the

next orbit, all the data timestamps will refer to this time).

The PETIROC can be then unmuted, re-enabling the data acquisition for the next orbit.

 Useful orbit part (3437Bx)

Flush Data Path

Mute ROC Channels

BC0

5Bx 5Bx 106Bx 5Bx 5Bx

10Bx 1Bx 10Bx 1Bx

Run start

Recommended time

(1Bx = 25ns = 1 GBT frame)

3437Bx

Useful orbit part (3437Bx) Orbit gap (127Bx)

Full orbit (3564Bx)

21

FPGA Slow Control structure
The internal Slow Control bus of the firmware is based on 16bits registers addressed on 16bits.

The most significant byte of the address is the slave base address while the less significant byte is the

local register address.

Slaves connected to the FPGA slow control bus:

FPGA General Control
This slave has mainly a debug, verification and identification purpose.

The 16 first registers of this slaves have a RW access but their value is ignored internally. This feature

allows to safely testing the slow control communication with the FPGAs.

This is also possible to read the FPGA ID for each of the three FPGAs of the board (0,1,2 depending on

their location), the firmware revision ID and the FPGA chip ID.

Slave ID Base address Slave Name Access

0 0x0000 FPGA General Control RW + RO

1 0x0100 PETIROC TOP Control RW + RO

2 0x0200 PETIROC BOT Control RW + RO

3 0x0300 TDC Control RW + RO

4 0x0400 TDC 0 LUT RO

5 0x0500 TDC 1 LUT RO

… … TDC LUT 2 -> 31 RO

36 0x2400 TDC 32 LUT RO

37 0x2500 TDC 33 LUT RO

38 0x2600 Serial Flash Control RW + RO

39 0x2700 Remote Update Control RW + RO

40 0x2800 TDC Timestamp Correction RW

41 0x2900 Data Path Control RW

Register Name Bit range Description Access Default Value

0 0x00 [15:0]

… … [15:0]

15 0x0F [15:0]

[1:0] FPGA_ID

[15:2] NOT USED (zeroed)

17 0x11 [15:0] FW_MASTER_REV_ID RO N/A

18 0x12 [15:0] FW_MINOR_REV_ID RO N/A

19 0x13 [15:0] Chip ID [63:48] RO N/A

20 0x14 [15:0] Chip ID [47:32] RO N/A

21 0x15 [15:0] Chip ID [31:16] RO N/A

22 0x16 [15:0] Chip ID [15:0] RO N/A

FPGA CHIP ID

FIRMWARE INFO

16 0x10 FPGA INFO RO N/A

Register Address

RW 0x0000RW TEST REG IGNORED

22

PETIROC Control
In addition to the control and status registers, this slave hosts a state machine dedicated to command

the PETIROC slow control interface. This state machine is able to perform the reset sequence or the

loading sequence (serialization) of the parameters in the PETIROC slow control shift register.

Warning: Since Firmware v3, the LSb of the PETIROC auto-reconfiguration period is now 8.33ns

(clk120MHz period) instead of 10ns.

Register Name Bit range Description Access Default Value

[0] '1' -> PETIROC configuration sequence request

[1] '1' -> Enable the PETIROC periodic reconfiguration

[15:2] IGNORED

[0] '1' -> PETIROC reset sequence request

[15:1] IGNORED

[0] '1' -> Force PETIROC digital stage OFF

[1] '1' -> Force PETIROC analog stage OFF

[2] '1' -> Force PETIROC ADC stage OFF

[3] '1' -> Force PETIROC DAC stage OFF

[4] Active low PETIROC digital part reset

[15:5] IGNORED

[0] '1' -> Emulate an input signal for every channels of the PETIROC

[1] Connected to the hold_ext pin of the PETIROC

[15:2] IGNORED

… .. NOT USED

[0] '1' -> Reset the bitflip counter

[15:1] IGNORED

10 0x0A [15:0] Reconfiguration period[15:0] RW 0x0000

11 0x0B [15:0] Reconfiguration period[31:16] RW 0x0000

12 0x0C [15:0] Reconfiguration period[47:32] RW 0x0000

… .. NOT USED

22 0x16 ConfigToROC Word0 [15:0] To PETIROC Internal Register [663:648] RW 0x0000

23 0x17 ConfigToROC Word1 [15:0] To PETIROC Internal Register [647:632] RW 0x0000

24 0x18 ConfigToROC Word2 [15:0] To PETIROC Internal Register [631:616] RW 0x0000

… … ConfigToROC Words… [15:0] To PETIROC Internal Register [615:24] RW 0x0000

62 0x3E ConfigToROC Word40 [15:0] To PETIROC Internal Register [23:8] RW 0x0000

[15:8] To PETIROC Internal Register [7:0]

[7:0] IGNORED

64 0x40 [15:0] Bitflip counter[15:0] RO N/A

65 0x41 [15:0] Bitflip counter[31:16] RO N/A

… .. NOT USED

99 0x63 ShiftRegWord0 [15:0] From PETIROC Internal Register [663:648] RO N/A

100 0x64 ShiftRegWord1 [15:0] From PETIROC Internal Register [647:632] RO N/A

101 0x65 ShiftRegWord2 [15:0] From PETIROC Internal Register [631:616] RO N/A

… … ShiftRegWords… [15:0] From PETIROC Internal Register [615:24] RO N/A

139 0x8B ShiftRegWord40 [15:0] From PETIROC Internal Register [23:8] RO N/A

[15:8] From PETIROC Internal Register [7:0]

[7:0] NOT USED (zeroed)

0x0000

Configuration bitflip counter

9 0x09 Bitflip counter reset

PETIROC auto-reconfiguration period

(LSb = 8.33 ns)

RW

RO N/A

0x0000RW63 0x3F ConfigToROC Word41

140 0x8C ShiftRegWord41

0x0000RW3 0x03 PETIROC injection pins

RW 0x0000

0x0000RW

2 0x02 PETIROC slow control pins 0x0000RW

Register Address

0 PETIROC LOAD CTRL0x00

1 0x01 PETIROC RESET CTRL

23

PETIROC Slow control loading block diagram

WARNING: PETIROC Type selection feature is removed since FW v4.0 (fixed to PETIROC 2C)

24

TDC Control
This slave hosts registers dedicated to control the TDC related features.

Injection Mode mapping:

• “0000” => Standard mode (PETIROC outputs for the first 32 TDC channels).

• “0001” => An independent 1kHz clock is applied as input for every TDC channels.

• “0010” => Upon reception of a BC0, a delayed pulse is broadcasted to the first 32 TDC channels

(delay is configurable with the Injection BC0 timing offset).

• “0100” => Upon reception of a BC0, activate the trig_ext pin for the 2 linked PETIROCs.

• “1000” => Upon reception of a Resync, activate the trig_ext pin for the 2 linked PETIROCs

Warning: Since Firmware v3.0, the LSb of the Data Counter Time Window value is now 8.33ns

(clk120MHz period) instead of 10ns.

TDC LUT Readout
It is possible to read the content of the TDC LUTs which are generated during the calibration procedure.

All of these LUTs are independent slaves connected to the internal slow control bus. Access to these

LUTs is possible in read-only.

Register Name Register range Description Access Default Value

[0] '1'-> Enable the TDC module RW 0x0000

[15:1] IGNORED

[0] '1' -> Specify the state of the CMD registers is ready to be registered RW 0x0000

[15:1] IGNORED

2 0x02 CMD Cali Req (Chan 0->15) [15:0] 0x0000

3 0x03 CMD Cali Req (Chan 16->31) [15:0] 0x0000

[1:0]

[15:2] IGNORED

5 0x05 CMD Meas Enable (Chan 0->15) [15:0] 0x0000

6 0x06 CMD Meas Enable (Chan 16->31) [15:0] 0x0000

[1:0]

[15:2] IGNORED

[3:0] TDC Injection mode selection

[15:4] IGNORED

9 0x09 Injection BC0 timing offset [15:0] Time offset between the reception of BC0 and trigger injection RW 0x0000

10 0x0A [15:0] DataCounterTimeWindow[15:0] RW 0x0000

11 0x0B [15:0] DataCounterTimeWindow[31:16] RW 0x0000

[0] '1' -> Start data counting

[15:1] IGNORED

[0] '0' -> Raw timestamps | '1' -> Enable BC0 Offset Correction

[1] '0' -> BC0 channels are forwarded | '1' -> BC0 timestamps dropped

[15:2] IGNORED

… .. NOT USED

16 0x10 DNL Build Done (Chan 0->15) [15:0]

17 0x11 DNL Build Done (Chan 16->31) [15:0]

[1:0]

[15:2] NOT USED (zeroed)

19 0x13 LUT Build Done (Chan 0->15) [15:0]

20 0x14 LUT Build Done (Chan 16->31) [15:0]

[1:0]

[15:2] NOT USED (zeroed)

[0] '1' -> data counting sequence is over, data counters can be read

[15:1] NOT USED (zeroed)

23 0x17 [15:0] DataCounter Chan0 [15:0] RO N/A

24 0x18 [15:0] DataCounter Chan0 [31:16] RO N/A

25 0x19 [15:0] DataCounter Chan1 [15:0] RO N/A

26 0x1A [15:0] DataCounter Chan1 [31:16] RO N/A

… … DataCounter Chan 2 -> 32 [15:0] RO N/A

89 0x59 [15:0] DataCounter Chan33 [15:0] RO N/A

90 0x5A [15:0] DataCounter Chan33 [31:16] RO N/A

0x0D13

Register Address

TDC Enable

CMD Valid

0x000

1 0x01

7 0x07 CMD Meas Enable (Chan 32->33)

DataCounter CTRL0x0C12

DataCounterTimeWindow

(LSb = 8.33 ns)

0x0000

'1' -> TDC Measure enable for each channel
RW

0x0000

4 0x04 CMD Cali Req (Chan 32->33)

'1' -> TDC calibration request for each channel
RW

0x0000

TDC DNL build done for each channel

TDC LUT build done for each channel

N/A

N/A

RW

RO

RO

N/A

RW 0x0001

DataCounter Chan0

DataCounter Chan1

RO

BC0 feature control

DataCounter Chan33

22

DNL Build Done (Chan 32->33)0x1218

Data Counter valid0x16

21 0x15 LUT Build Done (Chan 32->33)

8 0x08 Injection Mode RW 0x0000

25

Serial Flash Control
This slave ensures the communication with the Flash EEPROM connected to the FPGA. The memory is

divided into 256 sectors of 65536 bytes. The first 128 sectors are allocated to the Golden Firmware,

the second part of the memory is allocated for the Application Firmware. The flash control operations

such as sector protection and sector erasing are done using the CSR interface while the memory

content read and write operation are managed by the Memory interface.

CSR interface
This interface allows to perform control functions over the EEPROM linked to the FPGA such as sector

protection and sector erasing. As this device is a NOR Flash memory, a sector needs to be erased before

to be rewritten (erasing a sector sets all its bits at ‘1’). These actions are mandatory to edit (update)

the Application Firmware located in the second half of the flash memory.

Register Name Register range Description Access Default Value

0 0x00 [15:0] csr_writedata[31:16] RW 0x0000

1 0x01 [15:0] csr_writedata[15:0] RW 0x0000

[5:0] csr_address[5:0]

[15:6] IGNORED

[0] csr_write (this bit is automatically reset internally)

[15:1] IGNORED

[0] csr_read (this bit is automatically reset internally)

[15:1] IGNORED

[6:0] mem_burstcount[6:0]

[15:7] IGNORED

[3:0] mem_byteenable[3:0]

[15:4] IGNORED

7 0x07 [15:0] mem_writedata[31:16] RW 0x0000

8 0x08 [15:0] mem_writedata[15:0] RW 0x0000

9 0x09 [15:0] mem_writedata[31:16] RW 0x0000

10 0x0A [15:0] mem_writedata[15:0] RW 0x0000

[15:0] mem_writedata[31:16] RW 0x0000

[15:0] mem_writedata[15:0] RW 0x0000

67 0x43 [15:0] mem_writedata[31:16] RW 0x0000

68 0x44 [15:0] mem_writedata[15:0] RW 0x0000

69 0x45 [15:0] mem_writedata[31:16] RW 0x0000

70 0x46 [15:0] mem_writedata[15:0] RW 0x0000

[5:0] mem_address[21:16]

[15:6] IGNORED

72 0x48 [15:0] mem_address[15:0] RW 0x0000

[0] mem_write (this bit is automatically reset internally)

[15:1] IGNORED

[0] mem_read (this bit is automatically reset internally)

[15:1] IGNORED

… .. NOT USED

[0] csr_waitrequest

[15:1] NOT USED (zeroed)

129 0x81 [15:0] csr_readdata[31:16] RO N/A

130 0x82 [15:0] csr_readdata[15:0] RO N/A

[0] mem_waitrequest

[15:1] NOT USED (zeroed)

132 0x84 [15:0] mem_readdata[31:16] RO N/A

133 0x85 [15:0] mem_readdata[15:0] RO N/A

134 0x86 [15:0] mem_readdata[31:16] RO N/A

135 0x87 [15:0] mem_readdata[15:0] RO N/A

[15:0] mem_readdata[31:16] RO N/A

[15:0] mem_readdata[15:0] RO N/A

192 0xC0 [15:0] mem_readdata[31:16] RO N/A

193 0xC1 [15:0] mem_readdata[15:0] RO N/A

194 0xC2 [15:0] mem_readdata[31:16] RO N/A

195 0xC3 [15:0] mem_readdata[15:0] RO N/A

mem_ReadData word30

mem_ReadData word31

… …

0x83 mem_WaitRequest RO N/A

mem_ReadData word0

mem_ReadData words 2 -> 29

0x0000

128 0x80 CSR_WaitRequest RO N/A

mem_WriteData word30

mem_WriteData word31

……

mem_address
71 0x47

0x0000

RW 0x0000

4 0x04 CSR_Read RW 0x0000

mem_ReadData word1

3 0x03 CSR_Write

RW

5 0x05 mem_burstcount RW

CSR_ReadData

131

74 0x4A mem_Read RW

73 0x49 mem_Write

RW 0x0000

RW 0x0000

mem_WriteData word0

mem_WriteData word1

mem_WriteData words 2 -> 29

6 0x06 mem_byteenable 0x0000

0x0000

RW

Register Address

CSR_WriteData

2 0x02 CSR_Address

26

Write a CSR register

To write a CSR register, as the 4 Slow Control registers you need to write are contiguous, the easiest

way to proceed is to send the following GBT frame burst write request:

Burst WRITE request of 4 data words (BurstAdditionnalWords=3):

REQUEST ADDRESS => 0x2600

REQUEST PAYLOAD => [csr_writedata[31:16], csr_writedata[15:0], csr_address, “1”]

Alternatively, you can send the parameters in 4 single word write request frames (addressed to

0x2600, 0x2601, 0x2602 and 0x2603).

In any case, take note that the writing of “1” in the register 0x2603 has to occur last (as this bit launches

the register writing process).

Read a CSR register

To read the value of a CSR register, the easiest way to proceed is to send the following GTB frame burst

write request:

Burst WRITE request of 3 data words (BurstAdditionnalWords=2):

REQUEST ADDRESS => 0x2602

REQUEST PAYLOAD => [csr_address, “0”, ”1”]

Alternatively, you can send 2 single word write request frames (addressed to 0x2602 and 0x2604).
In any case, take note the writing of “1” in the register 0x2604 has to occur last (as this bit launches
the register reading process).

The return value is stored in the FPGA registers 0x2681 and 0x2682, you can easily read it using the
following burst read request:

Burst READ request of 2 words (BurstAdditionnalWords=1):

REQUEST ADDRESS => 0x2681

REPLY PAYLOAD => [csr_readdata[31:16], csr_readdata[15:0]]

Set protection to sectors [0;127] and unprotect sectors [128;255]

This operation allows edition of the application firmware part (second half of the memory) while

keeping safe the golden firmware part (first half of the memory) of the flash.

This procedure uses the function defined in the “Write a CSR register” section.

flash_csr_write(csr_writedata = 0x6, csr_address = 0x7)

flash_csr_write(csr_writedata = 0x01, csr_address = 0x8)

wait 50ms

flash_csr_write(csr_writedata = 0x1001, csr_address = 0x7)

flash_csr_write(csr_writedata = 0x38, csr_address = 0xA)

flash_csr_write(csr_writedata = 0x01, csr_address = 0x8)

wait 100ms

27

Erase a sector of the flash memory

This operation turns every memory bits of a given sector at “1”, making possible to write new data (a

memory write operation can only turns “1” into “0”). If the sector is protected, this should have no

effect. This procedure uses the function defined in the “Write a CSR register” section.

flash_csr_write(csr_writedata = 0x6, csr_address = 0x7)

flash_csr_write(csr_writedata = 0x01, csr_address = 0x8)

wait 50ms

flash_csr_write(csr_writedata = (nSector<<16), csr_address = 0x9)

flash_csr_write(csr_writedata = 0x3D8, csr_address = 0x7)

flash_csr_write(csr_writedata = 0x01, csr_address = 0x8)

wait 500ms

“nSector<<16” means the sector ID shifted left of 16bits, this represents the byte base address of a
given sector (as a sector is composed of 65536=2^16 bytes).
This procedure has to be performed 128 times, 1 time for each sector of the Application Firmware
part.

Summary of the CSR interface utilization

In order to update the Application Firmware stored in the flash memory, it is mandatory to use the
CSR interface to perform these preliminary steps:
Protect sectors [0:127] -> This ensures the Golden Firmware part remains untouched.
Unprotect sectors [128:255] -> This allows the edition of the flash content where the Application
Firmware is stored.
Erase sectors [128:255] -> This reset every bit of the Application Firmware part to “1”, allowing to
write a new content using the memory interface.

28

Memory interface
This interface allows to read the content and to write a new content in the flash memory. The

information needed to write a new Application Firmware in the flash memory is located in the Quartus

output files .rpd (raw binary flash content) and .map (gives the firmware size).

Important note

The memory interface addressing system is based on 32bits words. This explains why the addresses

used in this part are shifted right of 2 bits compared to the addresses used in the CSR interface part.

Example:
Byte base address of the Application Firmware => 0x800000 (used with CSR interface)
Word base address of the Application Firmware => 0x200000 (used with memory interface)

Write content of the flash

Thanks to the management of the burst mechanism of the interface, it is possible to write up to 32

memory words using only one GBT frame transaction:

Burst WRITE request of 69 data words (BurstAdditionnalWords=68):

REQUEST ADDRESS => 0x2605

REQUEST PAYLOAD => [32, 15, word0MSB, word0LSB, …, word31MSB, word31LSB, addrMSB,
addrLSB, “1”]

Here is the detail of the different fields of the GBT frame transaction payload:

• 32 refers to a burst length of 32 memory words at the interface level.

• 15 = 0xF refers to a byte mask at the interface value, it should be always set to this value.

• wordnMSB, wordnLSB refer to a memory word (32 bits) which is split in two halves because

the FPGA SlowControl communication is based on 16 bits words.

• addrMSB, addrLSB refer to the memory word base address of the burst write request.

• “1” is to request the launch of the memory words writing into the flash.

Read content of the flash

Thanks to the management of the burst mechanism of the interface, it is possible to read up to 32

memory words using only one GBT frame transaction:

Burst WRITE request of 70 data words (BurstAdditionnalWords=69):

REQUEST ADDRESS => 0x2605

REQUEST PAYLOAD => [32, 15, (0, 0…,0, 0 -> 64 words at 0), addrMSB, addrLSB, “0”, “1”]

The return value (the content of the 32 memory words) is then available in the 64 registers from

0x2684 to 0x26C3. They can be read easily using the following GBT frame read burst request:

Burst READ request of 64 words (BurstAdditionnalWords=63):

REQUEST ADDRESS => 0x2684

REPLY PAYLOAD => [word0MSB, word0LSB, … , word31MSB, word31LSB]

Summary of the memory interface utilization

This interface can be used to write 32 memory words (each composed of 4 bytes) in a single transaction

(this means that 512 consecutive operations are needed to fully rewrite a flash sector).

29

Remote update controller
This slave allows to jump from the golden firmware (which is the default boot firmware) to the

application firmware (the firmware which can be remotely updated without risk).

Write a CSR register

To write a CSR register, as the 4 SlowControl registers you need to write are contiguous, the easiest

way to proceed is to send the following GBT frame burst write request:

Burst WRITE request of 4 data words (BurstAdditionnalWords=3):

REQUEST ADDRESS => 0x2700

REQUEST PAYLOAD => [csr_writedata[31:16], csr_writedata[15:0], csr_address, “1”]

Alternatively, you can send the parameters in 4 single word write request frames (addressed to

0x2700, 0x2701, 0x2702 and 0x2703).

In any case, take note that the writing of “1” in the register 0x2703 has to occur last (as this bit launches

the register writing process).

Read a CSR register

To read the value of a CSR register, the easiest way to proceed is to send the following GTB frame burst

write request:

Burst WRITE request of 3 data words (BurstAdditionnalWords=2):

REQUEST ADDRESS => 0x2702

REQUEST PAYLOAD => [csr_address, “0”, ”1”]

Alternatively, you can send 2 single word write request frames (addressed to 0x2702 and 0x2704).
In any case, take note the writing of “1” in the register 0x2704 has to occur last (as this bit launches
the register reading process).

The return value is stored in the FPGA registers 0x2711 and 0x2712, you can easily read it using the
following burst read request:

Burst READ request of 2 words (BurstAdditionnalWords=1):

REQUEST ADDRESS => 0x2711

REPLY PAYLOAD => [csr_readdata[31:16], csr_readdata[15:0]]

Register Name Register range Description Access Default Value

0 0x00 [15:0] csr_writedata[31:16] RW 0x0000

1 0x01 [15:0] csr_writedata[15:0] RW 0x0000

[2:0] csr_address[2:0]

[15:3] IGNORED

[0] csr_write (this bit is automatically reset internally)

[15:1] IGNORED

[0] csr_read (this bit is automatically reset internally)

[15:1] IGNORED

… .. NOT USED

[0] csr_waitrequest

[15:1] NOT USED (zeroed)

17 0x11 [15:0] csr_readdata[31:16] RO N/A

18 0x12 [15:0] csr_readdata[15:0] RO N/A
CSR_ReadData

16 0x10 CSR_WaitRequest RO N/A

4 0x04 CSR_Read RW 0x0000

0x0000

3 0x03 CSR_Write RW 0x0000

Register Address

CSR_WriteData

2 0x02 CSR_Address RW

30

Jump from Golden Firmware to Application Firmware

To perform the jump to the Application Firmware, one needs to send the instructions to the Remote

Update Controller through the CSR interface (especially the byte base address of the Application

Firmware which is 0x800000). After the firmware jump, a SCA GPIO driven SOFT_RESET cycle is needed

to resynchronize the communication links (with the GBTx and between FPGAs). Unlike a N_CONFIG

cycle, a SOFT_RESET doesn’t change the firmware.

This procedure uses the functions defined in the “Write a CSR register” and “Read a CSR register”

sections.

rem_csr_write(csr_writedata = 0x800000, csr_address = 0x3) #Set AppFW base address

rem_csr_write(csr_writedata = 0x1, csr_address = 0x4) #Set FW ctrl bit to “1”

rem_csr_write(csr_writedata = 0x1, csr_address = 0x6) #FW Jump request

wait 500ms

Perform a SOFT_RESET cycle (using the SCA GPIO control) #To get back communication with FPGA

SUCCESS = rem_csr_read(csr_address = 0x4) #Check the FW ctrl bit value

If the return value SUCCESS is “1”, then the jump is a success and the FPGA is now working using the

Application Firmware. This firmware will remain active until a FPGA power cycle or a N_CONFIG cycle

(which always asks the FPGA to load the Golden Firmware).

If the return value SUCCESS is “0”, then the jump is a fail and the FPGA is back to the Golden Firmware.

This is probably caused by a corruption of the data located in the Application Firmware part.

31

TDC Timestamp correction module
This module provides a configurable timestamp offset correction for each of the 34 TDC channels.

Register Name Register range Description Access Default Value

0 0x00 [15:0] Timestamp correction[15:0] RW 0x0000
[7:0] Timestamp correction[23:16]
[15:8] IGNORED

2 0x02 [15:0] Timestamp correction[15:0] RW 0x0000
[7:0] Timestamp correction[23:16]
[15:8] IGNORED

4 0x04 [15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

6 0x06 [15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

[15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

60 0x3C [15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

62 0x3E [15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

64 0x40 [15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

66 0x42 [15:0] Timestamp correction[15:0] RW 0x0000

[7:0] Timestamp correction[23:16]

[15:8] IGNORED

RW 0x0000

Register Address

RW 0x0000

TDC Chan1 Timestamp correction
3 0x03 RW 0x0000

……

TDC Chan0 Timestamp correction
1 0x01

7 0x07

TDC Chan2 Timestamp correction
5 0x05

0x0000

TDC Chan3 Timestamp correction
RW

TDC Chan 4 -> 29 Timestamp correction
RW

0x0000

TDC Chan31 Timestamp correction
63 0x3F RW 0x0000

TDC Chan30 Timestamp correction
61 0x3D RW 0x0000

TDC Chan33 (Resync) Timestamp correction
67 0x43 RW 0x0000

TDC Chan32 (BC0) Timestamp correction
65 0x41 RW 0x0000

32

33

Data Path Control
This slave allows to configure the different features related to data path flow and latency regulation.

Registers 0 to 3 are dedicated to the data concentrator / GBT frame creator located in the Middle

FPGA, these registers only have an effect in FPGA 1.

The other registers are dedicated to the configuration of the TDC Readout module located in each

FPGA.

Register Name Register range Description Access Default Value

[5:0]
Add an extra-latency on data from Middle FPGA

(in number of CLK120MHz cycles -> LSb = 8,33ns)

[15:6] IGNORED

[5:0]
Maximum queue length for output data frames

(in number of frames = CLK40MHz cycles)

[15:6] IGNORED

[0] '1' -> Enable merging of the 2 channels from the same strip

[15:1] IGNORED

[0] '1'-> Drop single channel data from FPGA 0

[1] '1'-> Drop single channel data from FPGA 1

[2] '1'-> Drop single channel data from FPGA 2

[15:3] IGNORED

[6:0]
Maximum time drift between data creation and readout

(in number of CLK120MHz cycles -> LSb = 8,33ns)

[15:7] IGNORED

[5:0]
Minimum time between 2 data produced from the same TDC channel

(in number of CLK120MHz cycles -> LSb = 8,33ns)

[15:6] IGNORED

[0] '1' -> Pair Filtering Enable Strip 0

[1] '1' -> Pair Filtering Enable Strip 1

[N] '1' -> Pair Filtering Enable Strip N

[14] '1' -> Pair Filtering Enable Strip 14

[15] '1' -> Pair Filtering Enable Strip 15

7 0x07 NOT USED

8 0x08 Pair TS Diff Min Strip 0 [15:0] Minimum time difference between the 2 ends of the Strip 0 RW 0x0000

9 0x09 Pair TS Diff Min Strip 1 [15:0] Minimum time difference between the 2 ends of the Strip 1 RW 0x0000

… .. Pair TS Diff Min Strip N [15:0] Minimum time difference between the 2 ends of the Strip N RW 0x0000

22 0x16 Pair TS Diff Min Strip 14 [15:0] Minimum time difference between the 2 ends of the Strip 14 RW 0x0000

23 0x17 Pair TS Diff Min Strip 15 [15:0] Minimum time difference between the 2 ends of the Strip 15 RW 0x0000

24 0x18 Pair TS Diff Max Strip 0 [15:0] Maximum time difference between the 2 ends of the Strip 0 RW 0xFFFF

25 0x19 Pair TS Diff Max Strip 1 [15:0] Maximum time difference between the 2 ends of the Strip 1 RW 0xFFFF

… .. Pair TS Diff Max Strip N [15:0] Maximum time difference between the 2 ends of the Strip N RW 0xFFFF

38 0x26 Pair TS Diff Max Strip 14 [15:0] Maximum time difference between the 2 ends of the Strip 14 RW 0xFFFF

39 0x27 Pair TS Diff Max Strip 15 [15:0] Maximum time difference between the 2 ends of the Strip 15 RW 0xFFFF

[3:0]
Counter threshold (when the amount of data at the input of 1 channel is

above this threshold, the retriggering mitigation procedure is launched)

[15:4] IGNORED

[7:0]
Period between 2 decrement of the retriggering data counter

(in number of CLK120MHz cycles -> LSb = 8,33ns)

[15:8] IGNORED

[7:0]
Mute the 2 PETIROCs for the specified time after a retrig detection

(in number of CLK120MHz cycles -> LSb = 8,33ns)

[15:8] IGNORED

40 0x28 Retrig mitigation counter threshold RW 0x0000

6 0x06 Pair Filtering Enable RW 0x0000

0x0000

4 0x04 Readout Maximum Time Disparity RW 0x007F

3 0x03 Remove Single Channel Data RW 0x0000

D
at

a
C

o
n

ce
n

tr
at

o
r

co
n

fi
gu

ra
ti

o
n

O
n

ly
 u

se
d

 in
 t

h
e

M
id

d
le

 F
PG

A

Register Address

0 0x00 Middle FPGA Bus Extra Delay RW 0x000D

1 0x01 Output Frame Queue Maximum Size RW 0x003F

2 0x02 Strip Clustering Enable RW

TD
C

 R
ea

d
o

u
t

co
n

fi
gu

ra
ti

o
n

H
av

e
to

 b
e

co
n

fi
gu

re
d

 f
o

r
th

e
3

FP
G

A
s

42 0x2A Retrig mitigation MUTE_ROC duration RW 0x0000

41 0x29 Retrig mitigation counter decrement time RW 0x0000

5 0x05 Channel Dead Time RW 0x0000

34

TDC Channels Readout Module
This module is intended to read incoming data from the 34 TDC channels, to filter unexpected data

and to organize data to feed the local data bus in each of the 3 FPGAs.

Timestamp correction module

This module is intended to convert the raw timestamp from TDC into the expected timestamp. This is

done by subtracting the last BC0 raw timestamp (the channel time refers to the time between the BC0

and the detected hit) and subtracting a configurable constant offset (to get rid of the time skew

between channels related to the RPC strip geometry).

Counter
Control

Parameters

TD hannel ea out o ule

34 TDC
channel
outputs

 120

DATA
FIFO

Data FIFO
Rd logic

Out
Reg

Channel Time O set
BC0 Correc on EN

Pair
Filtering

Parameters

 aximum Time
Disparity
parameters

Dead me
window si e

 oadRdReq
DataCount

TDC
Data

Counter

Channel
dead me
module

1 TDC
channel data
 120

 ocal
DataBus

Channel
Pair

Filtering

Retriggering
mi ga on
(counter

S)

Timestamp
Correc on
 odule

Retrig mi ga on:
 counter threshold
 decrement me
 UTE_ROC dura on

 UTE_ROC (val_evt)

Slow control parameters

35

Retriggering mitigation module

When the threshold of the PETIROC is too low (too close from noise), a retriggering effect could appear.

This effect causes an oscillation of one or many PETIROC channels and therefore produces a lot of

consecutive false triggers after the first real one. As each consecutive trigger also creates a new

timestamp in the TDC module, this causes a flood of unexpected data in the readout module.

The retriggering mitigation module is here to detect when a PETIROC channel is oscillating (a high

number of timestamps are generated within a small time) and to mute the PETIROC output for a given

configurable time, allowing it to recover from its oscillating state.

Channel dead time module

The channel dead time module is a filter which ensures a minimum delay between 2 data generated

by the same TDC channel. Increasing the deadtime of the channels allows to hide the retriggering effect

by dropping the timestamps that are due to consecutive triggers.

Channel pair filtering module

The channel pair filtering module allows to validate the data matching between the 2 channels of a

strip. The timestamp difference is processed and data are dropped if the value is not within the

acceptable range (configurable minimum and maximum). If the value is correct, the data from the 2

channels are then recorded in the data buffer at the same time. Take note that when the pair filtering

is enabled, the first incoming data of the channel pair (from the direct strip channel) is delayed until

the arrival of the second data of the pair (from the return strip channel). This effect can lead to a light

increase of data latency.

Data from Resync and BC0 channels are not affected by this module and are just forwarded in the

pipeline as soon as they come.

36

Data buffering and multiplexing

The data buffer is made of a FIFO with a mechanism of maximum time disparity control. This allows to

set a maximum time budget for the data multiplexing in the 3 FPGAs.

The multiplexing is made using a constant priority encoder which respects the following rule (from

most to least priority):

TDC Channel ID Source

33 Resync

32 BC0

15 Direct Strip num = FPGA_ID*16

16 Return Strip num = FPGA_ID*16

13 Direct Strip num = FPGA_ID*16 + 2

18 Return Strip num = FPGA_ID*16 + 2

11 Direct Strip num = FPGA_ID*16 + 4

20 Return Strip num = FPGA_ID*16 + 4

9 Direct Strip num = FPGA_ID*16 + 6

22 Return Strip num = FPGA_ID*16 + 6

7 Direct Strip num = FPGA_ID*16 + 8

24 Return Strip num = FPGA_ID*16 + 8

5 Direct Strip num = FPGA_ID*16 + 10

26 Return Strip num = FPGA_ID*16 + 10

3 Direct Strip num = FPGA_ID*16 + 12

28 Return Strip num = FPGA_ID*16 + 12

1 Direct Strip num = FPGA_ID*16 + 14

30 Return Strip num = FPGA_ID*16 + 14

14 Direct Strip num = FPGA_ID*16 + 1

17 Return Strip num = FPGA_ID*16 + 1

12 Direct Strip num = FPGA_ID*16 + 3

19 Return Strip num = FPGA_ID*16 + 3

10 Direct Strip num = FPGA_ID*16 + 5

21 Return Strip num = FPGA_ID*16 + 5

8 Direct Strip num = FPGA_ID*16 + 7

23 Return Strip num = FPGA_ID*16 + 7

6 Direct Strip num = FPGA_ID*16 + 9

25 Return Strip num = FPGA_ID*16 + 9

4 Direct Strip num = FPGA_ID*16 + 11

27 Return Strip num = FPGA_ID*16 + 11

2 Direct Strip num = FPGA_ID*16 + 13

29 Return Strip num = FPGA_ID*16 + 13

0 Direct Strip num = FPGA_ID*16 + 15

31 Return Strip num = FPGA_ID*16 + 15

Sync signals

Even Strips

Odd Strips

37

Time disparity control

Data Concentrator Module
The data concentrator is intended to compress and merge data provided by the data buses of the 3

FPGAs. It also produces the uplink GBT data frames and offers a mechanism of latency regulation based

on the output activity. This module is only present in the Middle FPGA (the only one which

communicates with the GBTx chip).

Middle FPGA delay buffer

A configurable delay buffer is instantiated on the Middle FPGA data bus (as this is the local bus) to

compensate the latency due to inter-FPGA communication latency of the other buses. This is

Focu on Data oncent ato in i le F onl

Strip
Clustering

Strip
Clustering

Strip
Clustering

Data erging Register

Data Frame
FIFO

1 it
 120

1 it
 120

1 it
 120

Data Frame
 40

 e DataBus

 ocal DataBus

Right DataBus
Delay
Bu er

Con gurable delay (SlowControl)
By steps of .33ns (120 period)

 atency
limit logic

WordCnt

Drop oldest frame

Data Frame 120

38

implemented to reduce the amount of buffering resources needed by the backend to resynchronize

flows from the different FPGAs.

Strip Clustering

A strip clustering module is present on each data bus, its goal is to try to compress channel data issued

from the same strip.

From the pair of channel data, the timestamp difference is processed and forwarded on 16bits along

with the data corresponding to the Direct Strip channel (the timestamp from the return strip channel

data is dropped as it can be fully reconstructed). The channel ID is also re-numbered to produce a strip

ID.

The “Remove single data” register allows to force clustering and drop isolated channel data.

It is unadvised to enable the “Remove single data” for a FPGA where the pair filtering is not enabled

(if the pair filtering is not enabled for one strip, related data have a lot of chance to be dropped at the

concentrator level).

Data from Resync and BC0 channels are not affected by this module and are just recorded in the data

merging register as soon as they come.

Data merging, Frame creation and latency regulation

Data from the 3 buses are then merged to produce output data frame. This data merging is designed

to keep as much as possible a good balance between the amount of data from the 3 FPGAs.

The output frame is then recorded in the frame queue. As this queue is written at data bus frequency

(120MHz) and read at GBT frame frequency (40MHz), the number of pending frames can grow up to a

limit (defined by the “Output Frame Queue aximum Si e” register). When the limit is hit, oldest

frames in the queue are dropped in order to keep a hard latency limit to the data concentrator module.

 t i lu te in o ule

10

Direct Strip channel data (Chan ID in 0 1)

Strip TS Di = RetStrip DirStrip
(16 bits)

Sub

Chan ID
(6 bits)

FPGA ID
(2bits)

Timestamp
(24 bits)

Return Strip channel data (Chan ID in 16 31)

Chan ID
(6 bits)

FPGA ID
(2bits)

Timestamp
(24 bits)

Strip cluster data (Strip ID in 34 4)

Strip ID
= 4 DirChanID

(6 bits)

FPGA ID
(2bits)

Timestamp
(24 bits)

Sub

4

39

GBT-SCA features
The GBT-SCA is an ASIC which provides the slow control management of many of the FEB devices. It is

directly linked to the GBTX with a bidirectional 80Mb/s Elink.

https://espace.cern.ch/GBT-Project/GBT-SCA/Manuals/GBT-SCA_Manual_2019.002.pdf

GPIO
SCA owns 32 General Purpose digital IO lines (GPIO). Each line can be individually programmed as input

or output or in a tri-state mode.

The table below shows the connections between the SCA GPIOs and the other devices for the FEBv2r3:

GPIO index
SCA Port
Direction

GPIO ID Source/Destination

0 input CRC_ERROR_LEFT

From FPGAs (via lvl shifter) 1 input CRC_ERROR_MIDDLE

2 input CRC_ERROR_RIGHT

3 output NCONFIG_LEFT

To FPGAs (via lvl shifter) 4 output NCONFIG_MIDDLE

5 output NCONFIG_RIGHT

6 input INIT_DONE_LEFT

From FPGAs (via lvl shifter) 7 input INIT_DONE_MIDDLE

8 input INIT_DONE_RIGHT

9 output ENABLE_POWER_FPGAS To Power Supplies

10 output NOT_USED To FPGAs

11 input FAULT_4V
From Overcurrent protection

12 input FAULT_2V

13 input ALERT_LEFT

From Temperature sensors

14 input ALERT_MIDDLE

15 input ALERT_RIGHT

16 input ALERT_2V

17 input ALERT_4V

18 output SCA_JTAG_SELECT# To JTAG MUX

19 input SPARE_IO_LEFT_2
From Left FPGA

20 input SPARE_IO_LEFT_1

21 output SOFT_RESET_LEFT To Left FPGA

22 output SHDN_2V To Overcurrent protection

23 output SCA_SPI_EN To SPI MUX

24 input SPARE_IO_MIDDLE_2
From Middle FPGA

25 input SPARE_IO_MIDDLE_1

26 output SOFT_RESET_MIDDLE To Middle FPGA

27 output SHDN_4V To Overcurrent protection

28 input NOT_USED Open

29 input SPARE_IO_RIGHT_2
From Right FPGA

30 input SPARE_IO_RIGHT_1

31 output SOFT_RESET_RIGHT To Right FPGA

40

To avoid power supply related problems, it is highly advised to always set the 3 SOFT_RESET high

before changing the values of N_CONFIG, ENABLE_POWER_FPGAS, SHDN_2V and SHDN_4V outputs.

JTAG chain
The 3 FPGAs of the board belong to a JTAG chain that can be accessed either by the JTAG header (a

compatible INTEL FPGA programmer is needed) or through the GBT-SCA JTAG interface.

To make the SCA JTAG interface able to access to the chain, the corresponding SCA GPIO output has

to be set LOW.

This JTAG chain can be used as an alternative way to remotely change the firmware located in the flash

memories.

SPI Interface
Each FPGA has its own flash memory (ref: EPCQ128ASI16N) which stores the firmware loaded during

a FPGA configuration sequence.

These memories can be accessed through the SPI Interface of the GBT-SCA, this is the only way to

update the firmware when the FPGAs are not powered.

SCA
 TAG
 aster TDI

TDO

FPGA1
 TAG

(Bank3A)

FPGA2
 TAG

(Bank3A)

FPGA0
 TAG

(Bank3A)

TC T S TAG
 eader

FEB 2 T chain im li e loc ia am

TC T S
SCA
GPIO

To drive the FPGA TAG chainwith SCA interface:
1) ake sure there is nothing connected on the TAG header
2) Set SCA_ TAG_SE ECT (SCA GPIO 1) as output and value = 0

41

It is possible to write the same thing simultaneously in the 3 flash memories (in that case set the 3 SCA

SPI_SS to ‘0’), but the content of only one flash can be read at a given time (keep the other SPI_SS to

‘1’).

I²C Buses
SCA hosts 16 independent I²C Masters. On the FEB, only the 2 first buses are used:

• I²C channel 0 to communicate with the three FPGAs

• I²C channel 1 to access the different temperature sensors of the board

The following figure presents the topology of the I²C buses:

FEB 2 Fla h inte ace im li e loc ia am

AS_DATADC nCSO

DC nCS

FPGA 0
Bank 3A (SPI)

EPCQ12
Flash FPGA0

DATA

AS_DATADC nCSO

DC nCS

FPGA 1
Bank 3A (SPI)

EPCQ12
Flash FPGA1

DATA

AS_DATADC nCSO

DC nCS

FPGA 2
Bank 3A (SPI)

EPCQ12
Flash FPGA2

DATA

FEB 2 Fla h inte ace im li e loc ia am

DC nCS

EPCQ12
Flash FPGA2

DATA0

SCA SPI
Interface

DATA1

DATA2 DATA3 pul led IG

DC nCS

EPCQ12
Flash FPGA1

DATA0 DATA1

DATA2 DATA3 pul led IG

DC nCS

EPCQ12
Flash FPGA0

DATA0 DATA1

DATA2 DATA3 pul led IG

SPI_SS 0

SPI_SS 1

SPI_SS 2

SPI_C

SPI_ OSI

SPI_ ISO

42

I²C FPGAs Bus
This bus allows to control FPGAs features that cannot be accessible with the GBT frame: eLinks

loopback, word alignment (bitslip) configuration and pattern injection.

The I²C slaves instantiated in the FPGAs host 8bits registers addressed on 8bits.

To read a register (1 word I²C write transaction followed by 1 word I²C read transaction):

I²C address, Reg Address

To write a register (2 words I²C write transaction):

 I²C address, Reg Address, data byte

Register Name Register range Description Access Default Value

[0] '1' -> Elinks loopback enable

[1] '1' -> Uplink debug pattern enable

[2] '1' -> Debug pattern toggle enable

[3] '1' -> TDC bus pattern injection enable

[4] '1' -> Slow control bus pattern injection enable

[7:5] IGNORED

1 0x01 [7:0] Uplink Pattern (eLink 0) 0xAB

.. … [7:0] Uplink Pattern (eLink 1 -> 12) 0xAB

14 0x0E [7:0] Uplink Pattern (eLink 13) 0xAB

[0] '1' -> Auto Word alignment request

[7:1] IGNORED

[2:0] Rx bitslip value for eLinks connected to FPGA bank 7A

[3] IGNORED

[4] '1' -> Use the Rx bitslip value (bank 7A)

[7:5] IGNORED

[2:0] Rx bitslip value for eLinks connected to FPGA bank 4A

[3] IGNORED

[4] '1' -> Use the Rx bitslip value (bank 4A)

[7:5] IGNORED

[2:0] Tx bitslip value for every uplink eLinks

[7:3] IGNORED

[0] '1' -> Force the Gxb transceivers in locked mode

[7:1] IGNORED

… .. NOT USED

[2:0] Calculated downlink bitslip for bank 4A

[3] '1' -> Auto Word alignment success for bank 4A

[6:4] Calculated downlink bitslip for bank 7A

[7] '1' -> Auto Word alignment success for bank 7A

Register Address

0 0x00 Pattern injection CTRL RW 0x00

RWCalibration patterns

Auto Word Alignment request

Manual Word Alignment bank 7A

TxWordAlignmentConfig

Gxb Force Byte alignment

15 0x0F

16 0x10

17 0x11

18 0x12

19 0x13

0x13RW

RW 0x00

Manual Word Alignment bank 4A

RW 0x04

N/ARO

RW 0x13

32 0x20 Auto Word Alignment Results

RW 0x00

43

I²C Temperature Sensors Bus
This bus is used to configure and read the temperature from the LM75 temperature sensors of the

board.

https://www.mouser.com/datasheet/2/282/snis153a-123211.pdf

This component owns an internal pointer, which is used for addressing read transaction. This pointer

value is refreshed by an I²C write transaction. The internal pointer default value (at power on) is 0.

To change only internal pointer value (1 word I²C write transaction):

I²C address, Reg Address

To write an 8 bits register (2 words I²C write transaction):

I²C address, Reg Address, data byte

To write a 16 bits register (3 words I²C write transaction):

I²C address, Reg Address, most significant data byte, less significant data byte

To read an 8 bits register or a 16 bits register, the master must generate respectively a 1 word I²C read

transaction or a 2 words I²C read transaction. The return byte(s) is(are) the content of the register

pointed by the internal pointer.

Register
Address

Register
Name

Access Description
Default
Value

0x00 Temperature RO
Read the 9 most significant bits ([15:7]) to get the
temperature. The 7 less significant bits ([6:0]) are undefined.

N/A

0x01 Configuration RW
WARNING : This Register is ONLY 1 BYTE LONG !!!
Read and write transactions requires ONLY 1 DATA BYTE

0x00

0x02 THYST set point RW
Write the THYST value in the 9 most significant bits ([15:7]).
The 7 less significant bits ([6:0]) are ignored.

75°C

0x03 TOS set point RW
Write the TOS value in the 9 most significant bits ([15:7]).
The 7 less significant bits ([6:0]) are ignored.

80°C

44

ADC
To monitor voltage and current of the different power supplies and regulators of the board.

Board power management recap

ADC

index
ADC ID Source ADC input equation

0 RSSI_ADC From VTRX

1 1V5_VCCIO_ADC = 1/2 * 1V5_VCCIO

2 2V5_VCCIO_ADC = 1/3 * 2V5_VCCIO

3 3V3_VCCIO_ADC = 10/49 * 3V3_VCCIO

4 1V5_SAFE_ADC = 1/2 * 1V5_SAFE

5 2V5_SAFE_ADC = 1/3 * 2V5_SAFE

6 1V1_CORE_LEFT_ADC = 1/2 * 1V1_CORE_LEFT

7 1V1_CORE_MIDDLE_ADC = 1/2 * 1V1_CORE_MIDDLE

8 1V1_CORE_RIGHT_ADC = 1/2 * 1V1_CORE_RIGHT

9 1V1_VCCE_LEFT_ADC = 1/2 * 1V1_VCCE_LEFT

10 1V1_VCCE_MIDDLE_ADC = 1/2 * 1V1_VCCE_MIDDLE

11 1V1_VCCE_RIGHT_ADC = 1/2 * 1V1_VCCE_RIGHT

12 2V_CURRENT_ADC = 10 * (2V_INPUT - 2V_BOARD)

13 4V_CURRENT_ADC = 10 * (4V_INPUT - 4V_BOARD)

14 FPGA_CORE_CURRENT_LEFT_ADC = 10 * (1V5_REG_LEFT - 1V5_CORE_LEFT)

15 FPGA_CORE_CURRENT_MIDDLE_ADC = 10 * (1V5_REG_MIDDLE - 1V5_CORE_MIDDLE)

16 FPGA_CORE_CURRENT_RIGHT_ADC = 10 * (1V5_REG_RIGHT - 1V5_CORE_RIGHT)

17 VH_VCCIO_LEFT_ADC = 1/3 * VH_VCCIO_LEFT

18 VH_VCCIO_MIDDLE_ADC = 1/3 * VH_VCCIO_MIDDLE

19 VH_VCCIO_RIGHT_ADC = 1/3 * VH_VCCIO_RIGHT

20 2V_BOARD_ADC = 1/3 * 2V_BOARD

21 4V_BOARD_ADC = 10/49 * 4V_BOARD

22

23

24

25

26

27

28

29

30

31

NOT USED

From FPGA CORE VCC

Regulators

Power input

(via operational amplifier)

From VCCIO Regulators

(via voltage divider)

From VTRX/GBTX Regulators

(via voltage divider)

From FPGA GXB Regulators

From FPGA VCCIO Regulators

(via voltage divider)

From FPGA Regulators

(via operational amplifier)

Power input

(via operational amplifier)

45

Clocks
To perform their tasks, the three FPGAs must receive different external clocks and derive other clocks

internally using a PLL component.

External clocks

Main system clock - 40MHz
This clock is related to the bunch-crossing clock of the detector and is provided to the FPGA by the

GBTx ASIC. In the firmware, this is the clock which is used as input of a pll to create all the internal

clocks.

TDC calibration clock – 11MHz
This clock is required by the TDC in order to calibrate itself, the LUT building procedure is made possible

by this clock.

eLink clocks - 40Mhz (Middle FPGA only)
These clocks are provided by the GBTx ASIC in order to help the serialization/deserialization of eLinks

data in the middle FPGA. Using a 40MHz instead of a 320MHz allows to give information of the word

reconstruction phase. The deserialization clocks (to sample the 320Mbps downlink eLinks data) and

the serialization clocks (to send the 320Mbps uplink eLinks data) are derived from these 40MHz by a

PLL in the SerDes module of the middle FPGA.

Internal clocks
All of these internal clocks are derived from the main 40MHz clock inside each of the 3 FPGAs.

TDC Clock - 400MHz
This is the operating clock of the TDC, it corresponds to the coarse time resolution of the channels.

Main Slow control and Data bus clock - 120MHz
This is the data concentration clock, its frequency allows to reach the maximum uplink GBT frame data

bandwidth (capacity of 3 TDC data within the 40MHz GBT frame). This clock is also used in the slow

control master/slave communication within the three FPGAs.

GXB reference clock - 120MHz
This is the clock used within the high-speed transceivers required for the communication between the

different FPGAs.

Fast control clock - 80MHz (Middle FPGA only)
This is the clock used to generate the Resync of BC0 pulses upon reception of the corresponding fast

control command in a downlink GBT Frame. A mechanism is here to make the generated pulse only

lasts one 80MHz clock period. This allows to correctly generate pulses when many fast control

command are send is consecutive GBT frames.

46

FEB power management

Board power management overview

2V power path details

47

4V power path details

Power supply estimation

48

FEBv2_r3 Data channel mapping

Strip n° PETIROC Channel FPGA TDC Channel RStrip n° PETIROC Channel FPGA TDC Channel

15 5 0 15 26 31

14 6 1 14 25 30

13 7 2 13 24 29

12 8 3 12 23 28

11 9 4 11 22 27

10 10 5 10 21 26

9 11 6 9 20 25

8 12 7 8 19 24

7 19 8 7 12 23

6 20 9 6 11 22

5 21 10 5 10 21

4 22 11 4 9 20

3 23 12 3 8 19

2 24 13 2 7 18

1 25 14 1 6 17

0 26 15 0 5 16

Strip n° PETIROC Channel FPGA TDC Channel RStrip n° PETIROC Channel FPGA TDC Channel

31 5 0 31 26 31

30 6 1 30 25 30

29 7 2 29 24 29

28 8 3 28 23 28

27 9 4 27 22 27

26 10 5 26 21 26

25 11 6 25 20 25

24 12 7 24 19 24

23 19 8 23 12 23

22 20 9 22 11 22

21 21 10 21 10 21

20 22 11 20 9 20

19 23 12 19 8 19

18 24 13 18 7 18

17 25 14 17 6 17

16 26 15 16 5 16

Strip n° PETIROC Channel FPGA TDC Channel RStrip n° PETIROC Channel FPGA TDC Channel

47 5 0 47 26 31

46 6 1 46 25 30

45 7 2 45 24 29

44 8 3 44 23 28

43 9 4 43 22 27

42 10 5 42 21 26

41 11 6 41 20 25

40 12 7 40 19 24

39 19 8 39 12 23

38 20 9 38 11 22

37 21 10 37 10 21

36 22 11 36 9 20

35 23 12 35 8 19

34 24 13 34 7 18

33 25 14 33 6 17

32 26 15 32 5 16

For each FPGA: TDC Channel 32 BC0

TDC Channel 33 Resync

PETIROC TOP (Direct Strip) PETIROC BOTTOM (Return Strip)

FPGA LEFT (0)

FEBv2r3 Strip/PETIROC/TDC channel mapping

PETIROC TOP (Direct Strip)

PETIROC TOP (Direct Strip)

PETIROC BOTTOM (Return Strip)

PETIROC BOTTOM (Return Strip)

FPGA RIGHT (2)

FPGA MIDDLE (1)

49

PETIROC configuration reference
In the following tab, you can find information on parameters to configure the PETIROC slow control

registers with a proposed (tested) value. The values that need to be controlled/changed accordingly

to the wanted FEBv2_r3 utilization are highlighted in green.

Name
Bit

index
Size Order

Proposed
value

mask_discri_charge_ch0 0 1 1
mask_discri_charge_ch1 1 1 1
mask_discri_charge_ch2 2 1 1
mask_discri_charge_ch3 3 1 1
mask_discri_charge_ch4 4 1 1
mask_discri_charge_ch5 5 1 1
mask_discri_charge_ch6 6 1 1
mask_discri_charge_ch7 7 1 1
mask_discri_charge_ch8 8 1 1
mask_discri_charge_ch9 9 1 1
mask_discri_charge_ch10 10 1 1
mask_discri_charge_ch11 11 1 1
mask_discri_charge_ch12 12 1 1
mask_discri_charge_ch13 13 1 1
mask_discri_charge_ch14 14 1 1
mask_discri_charge_ch15 15 1 1
mask_discri_charge_ch16 16 1 1
mask_discri_charge_ch17 17 1 1
mask_discri_charge_ch18 18 1 1
mask_discri_charge_ch19 19 1 1
mask_discri_charge_ch20 20 1 1
mask_discri_charge_ch21 21 1 1
mask_discri_charge_ch22 22 1 1
mask_discri_charge_ch23 23 1 1
mask_discri_charge_ch24 24 1 1
mask_discri_charge_ch25 25 1 1
mask_discri_charge_ch26 26 1 1
mask_discri_charge_ch27 27 1 1
mask_discri_charge_ch28 28 1 1
mask_discri_charge_ch29 29 1 1
mask_discri_charge_ch30 30 1 1
mask_discri_charge_ch31 31 1 1
input_dac_ch0 32 8 LSB first 0x80
cmd_input_dac_ch0 40 1 1
input_dac_ch1 41 8 LSB first 0x80
cmd_input_dac_ch1 49 1 1
input_dac_ch2 50 8 LSB first 0x80
cmd_input_dac_ch2 58 1 1
input_dac_ch3 59 8 LSB first 0x80
cmd_input_dac_ch3 67 1 1

50

input_dac_ch4 68 8 LSB first 0x80
cmd_input_dac_ch4 76 1 1
input_dac_ch5 77 8 LSB first 0x80
cmd_input_dac_ch5 85 1 1
input_dac_ch6 86 8 LSB first 0x80
cmd_input_dac_ch6 94 1 1
input_dac_ch7 95 8 LSB first 0x80
cmd_input_dac_ch7 103 1 1
input_dac_ch8 104 8 LSB first 0x80
cmd_input_dac_ch8 112 1 1
input_dac_ch9 113 8 LSB first 0x80
cmd_input_dac_ch9 121 1 1
input_dac_ch10 122 8 LSB first 0x80
cmd_input_dac_ch10 130 1 1
input_dac_ch11 131 8 LSB first 0x80
cmd_input_dac_ch11 139 1 1
input_dac_ch12 140 8 LSB first 0x80
cmd_input_dac_ch12 148 1 1
input_dac_ch13 149 8 LSB first 0x80
cmd_input_dac_ch13 157 1 1
input_dac_ch14 158 8 LSB first 0x80
cmd_input_dac_ch14 166 1 1
input_dac_ch15 167 8 LSB first 0x80
cmd_input_dac_ch15 175 1 1
input_dac_ch16 176 8 LSB first 0x80
cmd_input_dac_ch16 184 1 1
input_dac_ch17 185 8 LSB first 0x80
cmd_input_dac_ch17 193 1 1
input_dac_ch18 194 8 LSB first 0x80
cmd_input_dac_ch18 202 1 1
input_dac_ch19 203 8 LSB first 0x80
cmd_input_dac_ch19 211 1 1
input_dac_ch20 212 8 LSB first 0x80
cmd_input_dac_ch20 220 1 1
input_dac_ch21 221 8 LSB first 0x80
cmd_input_dac_ch21 229 1 1
input_dac_ch22 230 8 LSB first 0x80
cmd_input_dac_ch22 238 1 1
input_dac_ch23 239 8 LSB first 0x80
cmd_input_dac_ch23 247 1 1
input_dac_ch24 248 8 LSB first 0x80
cmd_input_dac_ch24 256 1 1
input_dac_ch25 257 8 LSB first 0x80
cmd_input_dac_ch25 265 1 1
input_dac_ch26 266 8 LSB first 0x80
cmd_input_dac_ch26 274 1 1

51

input_dac_ch27 275 8 LSB first 0x80
cmd_input_dac_ch27 283 1 1
input_dac_ch28 284 8 LSB first 0x80
cmd_input_dac_ch28 292 1 1
input_dac_ch29 293 8 LSB first 0x80
cmd_input_dac_ch29 301 1 1
input_dac_ch30 302 8 LSB first 0x80
cmd_input_dac_ch30 310 1 1
input_dac_ch31 311 8 LSB first 0x80
cmd_input_dac_ch31 319 1 1
input_dac_ch_dummy 320 8 LSB first 0x80
mask_discri_time_ch0 328 1 1
mask_discri_time_ch1 329 1 1
mask_discri_time_ch2 330 1 1
mask_discri_time_ch3 331 1 1
mask_discri_time_ch4 332 1 1
mask_discri_time_ch5 333 1 1
mask_discri_time_ch6 334 1 1
mask_discri_time_ch7 335 1 1
mask_discri_time_ch8 336 1 1
mask_discri_time_ch9 337 1 1
mask_discri_time_ch10 338 1 1
mask_discri_time_ch11 339 1 1
mask_discri_time_ch12 340 1 1
mask_discri_time_ch13 341 1 1
mask_discri_time_ch14 342 1 1
mask_discri_time_ch15 343 1 1
mask_discri_time_ch16 344 1 1
mask_discri_time_ch17 345 1 1
mask_discri_time_ch18 346 1 1
mask_discri_time_ch19 347 1 1
mask_discri_time_ch20 348 1 1
mask_discri_time_ch21 349 1 1
mask_discri_time_ch22 350 1 1
mask_discri_time_ch23 351 1 1
mask_discri_time_ch24 352 1 1
mask_discri_time_ch25 353 1 1
mask_discri_time_ch26 354 1 1
mask_discri_time_ch27 355 1 1
mask_discri_time_ch28 356 1 1
mask_discri_time_ch29 357 1 1
mask_discri_time_ch30 358 1 1
mask_discri_time_ch31 359 1 1
6b_dac_ch0 360 6 LSB first 0x01
6b_dac_ch1 366 6 LSB first 0x01
6b_dac_ch2 372 6 LSB first 0x01

52

6b_dac_ch3 378 6 LSB first 0x01
6b_dac_ch4 384 6 LSB first 0x01
6b_dac_ch5 390 6 LSB first 0x01
6b_dac_ch6 396 6 LSB first 0x01
6b_dac_ch7 402 6 LSB first 0x01
6b_dac_ch8 408 6 LSB first 0x01
6b_dac_ch9 414 6 LSB first 0x01
6b_dac_ch10 420 6 LSB first 0x01
6b_dac_ch11 426 6 LSB first 0x01
6b_dac_ch12 432 6 LSB first 0x01
6b_dac_ch13 438 6 LSB first 0x01
6b_dac_ch14 444 6 LSB first 0x01
6b_dac_ch15 450 6 LSB first 0x01
6b_dac_ch16 456 6 LSB first 0x01
6b_dac_ch17 462 6 LSB first 0x01
6b_dac_ch18 468 6 LSB first 0x01
6b_dac_ch19 474 6 LSB first 0x01
6b_dac_ch20 480 6 LSB first 0x01
6b_dac_ch21 486 6 LSB first 0x01
6b_dac_ch22 492 6 LSB first 0x01
6b_dac_ch23 498 6 LSB first 0x01
6b_dac_ch24 504 6 LSB first 0x01
6b_dac_ch25 510 6 LSB first 0x01
6b_dac_ch26 516 6 LSB first 0x01
6b_dac_ch27 522 6 LSB first 0x01
6b_dac_ch28 528 6 LSB first 0x01
6b_dac_ch29 534 6 LSB first 0x01
6b_dac_ch30 540 6 LSB first 0x01
6b_dac_ch31 546 6 LSB first 0x01
EN_10bits_DAC 552 1 1
PP_10bits_DAC 553 1 1
10b_dac_vth_discri_charge 554 10 MSB first 0x000
10b_dac_vth_discri_time 564 10 MSB first 0x1F4
EN_ADC 574 1 0
PP_ADC 575 1 0
sel_startb_ramp_ADC_ext 576 1 0
usebcompensation 577 1 0
EN_bias_DAC_delay 578 1 1
PP_bias_DAC_delay 579 1 1
EN_bias_ramp_delay 580 1 0
PP_bias_ramp_delay 581 1 0
8b_dac_delay 582 8 LSB first 0x00
EN_discri_delay 590 1 1
PP_discri_delay 591 1 1
PP_temp_sensor 592 1 0
EN_temp_sensor 593 1 0

53

EN_bias_pa 594 1 1
PP_bias_pa 595 1 1
EN_bias_discri 596 1 1
PP_bias_discri 597 1 1
cmd_polarity 598 1 0
latch_discri 599 1 1
EN_bias_6b_dac 600 1 1
PP_bias_6b_dac 601 1 1
EN_bias_tdc 602 1 0
PP_bias_tdc 603 1 0
ON_OFF_input_dac 604 1 1
EN_bias_charge 605 1 0
PP_bias_charge 606 1 0
cf_100fF 607 1 0
cf_200fF 608 1 0
cf_2_5pF 609 1 0
cf_1_25pF 610 1 0
EN_bias_sca 611 1 0
PP_bias_sca 612 1 0
EN_bias_discri_charge 613 1 0
PP_bias_discri_charge 614 1 0
EN_bias_discri_adc_time 615 1 0
PP_bias_discri_adc_time 616 1 0
EN_bias_discri_adc_charge 617 1 0
PP_bias_discri_adc_charge 618 1 0
DIS_razchn_int 619 1 1
DIS_razchn_ext 620 1 0
SEL_80M 621 1 0
EN_80M 622 1 0
EN_slow_lvds_rec 623 1 1
PP_slow_lvds_rec 624 1 1
EN_fast_lvds_rec 625 1 1
PP_fast_lvds_rec 626 1 0
EN_transmitter 627 1 0
PP_transmitter 628 1 0
ON_OFF_1mA 629 1 1
ON_OFF_2mA 630 1 1
NC1 631 1 0
ON_OFF_ota_mux 632 1 0
ON_OFF_ota_probe 633 1 0
DIS_trig_mux 634 1 1
EN_NOR32_time 635 1 0
EN_NOR32_charge 636 1 0
DIS_triggers 637 1 0
EN_dout_oc 638 1 0
EN_transmit 639 1 0

54

PA_Ccomp<0> 640 1 0

2
B

 &
 2

C
 o

n
ly

PA_Ccomp<1> 641 1 0

PA_Ccomp<2> 642 1 0

PA_Ccomp<3> 643 1 1

NC2 644 1 1

NC3 645 1 0

NC4 646 1 0

Choice_trigger_out 647 1 0

Delay_reset_trigger 648 4 LSB first 0x0

2
C

 o
n

ly

NC5 652 1 0

NC6 653 1 0

NC7 654 1 0

En_reset_trigger_delay 655 1 0

Delay_reset_ToT 656 4 LSB first 0x0

NC8 660 1 0

NC9 661 1 0

NC10 662 1 0

EN_reset_ToT_delay 663 1 0

55

APPENDIX: Outdated material (removed features, previous board

 e i ion …)

Quick start guide

WARNING: Section refers to an old revision of the FEB (FEBv2r2)

This guide is a checklist that provides the shortest path to get the FEB functional (every feature

accessible). It is assumed you already have a backend board implementing a well-configured

GBT_FPGA module and this system is capable of producing GBT frames and interpreting GBT frames

accordingly to the format specified in the FEB specification document.

Installation
Plug 4 power cables between a power supply and the FEB (2V/GND and 4V/GND).

Plug the optical link between the backend board that hosts the GBT FPGA and the FEB.

Tune and enable the power supply.

Depending on your setup, it can be useful to compensate the voltage drop caused by power wires. If

you are using power wires longer than a meter, it is highly recommended to use a regulated power

supply with sense wires (the nominal current for the input 2V supply of the FEB is higher than 6A, this

causes a large voltage drop due to the wire resistance).

If the board is correctly powered, the LEDs PGOOD_SAFE and RX_READY are ON.

If the GBT_FPGA module of the backend board is correctly working, the LED TX_READY is ON.

As the GBTx present on the board has a fused configuration, the GBT link is ready to communicate with

the SCA.

Configuring SCA
To perform this configuration, the SCA must be accessed using the EC (External Control) field of the

GBT frame. To generate conveniently the external control bits of the frame, it is advised to implement

a GBT-SC module (CERN development) in the backend, next to the GBT FPGA module. For more details,

check SCA documentation.

SCA Ctrl reg initialization

The goal of this step is to setup the SCA channels used to monitor and control FEB features (GPIOs,

ADCs and the two I²C buses).

56

SCA channels enabling:

57

Set the correct configuration for the three control registers of the SCA:

• CRB (CMD = 0x02) VAL = 0x1C

• CRC (CMD = 0x04) VAL = 0x00

• CRD (CMD = 0x06) VAL = 0x10

I²C bus configuration

Configure the two I²C buses managed by the SCA:

• I²C Channel0 configuration (CH 0x03, CMD 0x30) VALUE = 0x88

• I²C Channel1 configuration (CH 0x04, CMD 0x30) VALUE = 0x88

The proposed value (0x88) stands for a “100k ”, “nbytes=2”, “C OS” configuration.

GPIOs direction configuration

Configure the GPIO direction register:

• GPIO direction configuration (CH 0x02, CMD 0x20) D = 0x08 0x40 0x06 0x38

Power enabling

Once GPIO direction setting is done, SCA GPIOs defined as OUTPUT can be controlled, to enable power.

Using the DATAOUT register, bits corresponding to the 4V ENABLE (D[27]), 2V ENABLE (D[22]) and

FPGA POWER ENABLE (D[9]) have to be set high.

• GPIO DATAOUT configuration (CH 0x02, CMD 0x10) D = 0x08 0x40 0x02 0x00

This turns on the LED PGOOD_CORE.

58

Important note:

As all the SCA GPIOs values are controlled by the same register, you have to send the full register

content even if you want to change only one output.

To change only a subset of output values while keeping the others unchanged, you have 2 solutions:

• Read the register value, change only the bits you want and write the modified value.

• Keep a memory of the register value on the software side.

FPGA Configuration

FPGA firmware loading request is also done by controlling SCA GPIOs.

Activating the N_CONFIG pins of the FPGAs make them to load the firmware stored in the EEPROM.

GPIO mapping reminder:

• D[3] N_CONFIG_LEFT

• D[4] N_CONFIG_MIDDLE

• D[5] N_CONFIG_RIGHT

• D[21] SOFT_RESET_LEFT

• D[26] SOFT_RESET_MIDDLE

• D[31] SOFT_RESET_RIGHT

The first command requests the firmware loading for the 3 FPGAs, while the second releases the soft

reset of the FPGAs:

• GPIO DATAOUT configuration (CH 0x02, CMD 0x10) D = 0x8C 0x60 0x02 0x38

• GPIO DATAOUT configuration (CH 0x02, CMD 0x10) D = 0x08 0x40 0x02 0x38

If the three onboard EEPROMs contain a firmware, the three FPGAs are now configured and accessible

(green FPGA LEDs are blinking, 2 red FPGA LEDs are ON).

59

(Optional step) Load a new firmware in FPGAs/EEPROM

JTAG configuration through the Intel header

If you want to rewrite the EEPROM content (or directly the FPGA) with a new firmware, you can do it

through the dedicated JTAG. This is the only way which allows to edit the Golden Firmware without

the risk of bricking the FEB, but it implies a physical access to the board to connect the JTAG

programming cable.

To write directly the firmware in the FPGAs, you will need the firmware in the .sof format (directly

produced by the firmware compilation).

To write in the EEPROM, you will need the firmware in the .jic format.

File conversion

To convert the .sof file in a .jic file, you can use the Quartus converter tool (“File” -> “Convert

Programming Files”).

60

Component reconfiguration

Once you have the file you need, you can launch the Quartus programmer tool and recreate the JTAG

chain topology (the 3 FPGAs and the 3 attached EEPROM).

To write an EEPROM content, the linked FPGA has to be reconfigured with the factory firmware which

includes the Flash loader IP.

Once the new firmware is loaded in the EEPROM, the N_CONFIG sequence (driven by the SCA GPIOs)

must be performed again to get the FPGAs configured.

Flash firmware edition through GBT frames (optical link)

This is a fully remote operation but as it can be risky for the flash content integrity it is strongly advised

to only edit the Application Firmware part of the flash if you don’t have a physical access to the board

(if a corruption happens on the Golden Firmware part of the flash, the only way to revive the FEB is to

perform a new configuration through the JTAG connector).

For this operation you need to get the .rpd file of the firmware, which is the raw binary content of the

flash memory. Using the .map file you can check the start address and the stop address of the

Application Firmware you want to load.

First lines of a .map file for a given firmware:

BLOCK START ADDRESS END ADDRESS

Page_0 0x00000000 0x0057370D

Page_1 0x00800000 0x00D7370D

…

- All the addresses in this file are byte addresses

…

61

The flash content is paginated, each page (firmware content) starts at the beginning of each halves of

the memory.

• Page_0 starting at address 0 is the Golden Firmware location.

• Page_1 starting at the byte address 0x800000 is the Application Firmware location.

To update the Application Firmware, one needs to:

1. Open the .rpd file in bytemode

2. Write the content of the .rpd files from byte 0x800000 to byte 0xD7370D in the flash from the

byte address 0x800000 to the byte address 0xD7370D.

Note that for the Application Firmware the start address is always 0x800000 but the end address can

change, this is why it is mandatory to check the range in the .map file.

Alternatively, you can choose to always copy the full second part of the .rpd file (from byte 0x800000

to byte 0xFFFFFF), and in this case you don’t need the .map file.

To get more information about how to edit the flash content, refer to the Flash Interface Slow Control

slave section.

FPGAs Slow control communication check

The slow control slave 0 can be freely used to test communication with the 3 FPGAs.

The first 16 registers of this slave (addressed from 0x0000 to 0x000F) can be written and read back to

test the link behavior (these registers are reserved for test purpose and the values are ignored

internally).

The read only register 16 (addressed 0x0010) stores the ID of its FPGA:

• FPGA_LEFT_ID = 0

• FPGA_MIDDLE_ID = 1

• FPGA_RIGHT_ID = 2

FPGA test frame examples:

0x0007 0x0000 0x0010 0x0000 0x0000 #read ID of the 3 FPGAs

0x0002 0x0100 0x0000 0xAAAA 0x0000 #write 0xAAAA in the reg0 of FPGA 1 (middle)

0x0002 0x0000 0x0000 0x0000 0x0000 #read reg0 of FPGA 1

TDC control
The TDC configuration is made by writing registers in the slave 0x03 of the FPGAs. During initialization

(after a FPGA reset) a default Look Up Table is loaded in the TDC, making it ready to perform tests.

You can easily enable the TDC Channel 32 (BC0 loopback) with these 3 frames:

0x0002 0x0100 0x0300 0x0001 0x0000 #Enable TDC (reg0 bit0) for FPGA 1

0x0002 0x0100 0x0307 0x0001 0x0000 #Enable TDC_Channel_32 (reg7 bit0) for FPGA 1

0x0002 0x0100 0x0301 0x0001 0x0000 #CMD Valid (reg1 bit0) for FPGA 1

When this configuration is done, sending a BC0 through the fast control field of the downlink frame

should generate a data frame on the uplink.

62

0x4000 0x0000 0x0000 0x0000 0x0000 #Simple downlink frame to generate BC0

It is also possible to send continuously this frame (at the GBT frame rate = 40MHz) to check that the

timestamp difference of two consecutive TDC data is 25ns.

Important Note:

When the FPGA process and send data continuously at high rate, it can be impossible to read slow

control registers (TDC data and slow control replies are multiplexed on the same uplink, with a higher

priority for data). This doesn’t affect write transactions as the downlink bandwith is always dedicated

to slow control.

The easiest way to regain control over the bandwidth is to disable TDC module:

0x0007 0x0100 0x0300 0x0000 0x0000 #Disable TDC (reg0 bit0) for the 3 FPGAs

This mutes data generation in the FPGAs.

The TDC readout module implements a data counter which counts generated TDC data for each

channel during a configurable time window. The time window parameter is 32bits wide with a LSB of

10ns.

Example frames to use data counter feature:

0x0002 0x0101 0x030A 0x4240 0x000F #Configure a time window of 10ms for FPGA 1

0x0002 0x0100 0x030C 0x0001 0x0000 #Start Data counter (regC bit0) for FPGA 1

0x0002 0x0001 0x0357 0x0000 0x0000 #Read the Channel32 (BC0) data counter for FPGA1

0x0002 0x0043 0x0317 0x0000 0x0000 #Read the 34 channels data counters (68 registers)

This kind of test should ensure the TDC channels are generating the correct amount of data.

In addition to the Resync and BC0 loopback features, you can also generate TDC data in an easy way

by selecting the injection mode 0b001. This make the input of the 34 TDC channels fed by a 1kHz clock:

0x0002 0x0100 0x0308 0x0001 0x0000 #Set the TDC debug injection mode to “001”

PETIROC configuration
Once TDC module is operational for data taking, the 2 PETIROCs can be enabled and configured. They

are accessible through 2 similar slaves: 0x01 for TOP ASIC and 0x02 for BOTTOM ASIC

Example frames to enable the TOP PETIROC managed by the middle FPGA:

0x0002 0x0100 0x0102 0x0010 0x0000 #Disable PETIROC Active low RESET

0x0002 0x0100 0x0104 0x0001 0x0000 #Enable trigger auto-reset state machine

The PETIROC needs to be configured before utilization. This configuration is made by writing the

parameters in the dedicated 41 FPGA registers and then pushing all the content to the PETIROC thanks

to a shift register.

Example frames to load and reset the TOP PETIROC managed by FPGA 1:

63

0x0002 0x0100 0x0101 0x0001 0x0000 #PETIROC configuration reset request frame

0x0002 0x0100 0x0100 0x0001 0x0000 #PETIROC configuration load request frame

In our application, the only things that needs to be changed during calibration stage are:

• mask_discri_time_ch (for each channel), acts as a channel enable.

• 6b_dac_ch (for each channel), 6bits DAC value used to compensate channel differences.

• 10b_dac_vth_discri_time (common to every channel), 10bits DAC global channel offset.

64

FEBv2_r2 detailed boot sequence

WARNING: This section refers to an old revision of the FEB (FEBv2r2)

In the following pages, you can find the detailed transcript of the sequence that must be followed to

boot the FEBv2_r2 with the FW v4.3 (currently the last available version). This sequence is tested and

optimized to allow the utilization of up to 30 meters long power wires (using a CAEN Easy Crate

regulated power supply and proper sense wires). A 2200µF electrolytic capacitor was added on both

2V and 4V power terminals of the FEB.

Some commands are redundant because this sequence can be run independently of the current state

of the board: cold FEB (boot), hot FEB (reboot), faulty/undefined state (recovery reboot).

At the end of this sequence, the FEB is ready to receive the slow control values to set the PETIROC,

TDC and other datapath settings.

------------ GBT-FPGA initialization
11:07:51.242 GBT-FPGA reseting...
11:07:51.243 wait GBT ready loop
11:07:51.744 wait GBT ready loop
11:07:52.245 GBT-FPGA ready [OK]

======================== SCA configuration ================================

------------ GBT External Control frame generator initialization (GBT-FPGA side)
11:07:52.246 SCA command CONNECT
11:07:52.247 SCA command RESET
------------ SCA enable GPIO, I2C_0, I2C_1, JTAG, ADC
11:07:52.247 SCA command 02 to channel 00 with data 1C000000
11:07:52.248 SCA command 04 to channel 00 with data 00000000
11:07:52.248 SCA command 06 to channel 00 with data 18000000
------------ SCA I2C_0 configured freq=100kHz, nbyte=2 sclmode=CMOS
11:07:52.249 SCA command 30 to channel 03 with data 88000000
------------ 11:07:52.249 SCA I2C_1 configured freq=100kHz, nbyte=2 sclmode=CMOS
11:07:52.249 SCA command 30 to channel 04 with data 88000000
------------ SCA GPIO direction configuration :
------------ SCA GPIO 0, 1, 2, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 23, 24, 25, 28, 29, 30 -> input
------------ SCA GPIO 3, 4, 5, 9, 10, 21, 22, 26, 27, 31 -> output
11:07:52.250 SCA command 20 to channel 02 with data 8C600638
------------ SCA JTAG configured freq=1000.0 Hz, nbit=46, rxedge=rising, txedge=rising,
bitorder=lsb_first, idletck=high
11:07:52.251 SCA command 90 to channel 13 with data 00004E1F
11:07:52.251 SCA command 80 to channel 13 with data 0000082E
------------ SCA get ID
11:07:52.252 SCA command D1 to channel 14 with data 00000001
11:07:52.252 SCA chip ID is 00BE7A
------------ SCA GPIO 0, 1, 2 configured interrupt on rising edge
------------ SCA GPIO 11, 12, 13, 14, 15, 16, 17 configured interrupt on falling edge
11:07:52.253 SCA command 60 to channel 02 with data 00000001
11:07:52.253 SCA command 30 to channel 02 with data 0003F807
11:07:52.254 SCA command 40 to channel 02 with data 00000007

65

======================== FPGA initialization sequence =====================

------------ GPIO 21 set to 1 (FPGA LEFT soft reset)
11:07:52.255 SCA command 11 to channel 02 with data 00000000
11:07:52.256 SCA command 10 to channel 02 with data 00200000
------------ GPIO 3 set to 1 (FPGA LEFT nconfig)
11:07:52.257 SCA command 11 to channel 02 with data 00000000
11:07:52.258 SCA command 10 to channel 02 with data 00200008
------------ Wait 50 ms after any FPGA configuration
------------ GPIO 31 set to 1 (FPGA RIGHT soft reset)
11:07:52.309 SCA command 11 to channel 02 with data 00000000
11:07:52.309 SCA command 10 to channel 02 with data 80200008
------------ GPIO 5 set to 1 (FPGA RIGHT nconfig)
11:07:52.310 SCA command 11 to channel 02 with data 00000000
11:07:52.310 SCA command 10 to channel 02 with data 80200028
------------ Wait 50 ms after any FPGA configuration
------------ GPIO 26 set to 1 (FPGA MIDDLE soft reset)
11:07:52.361 SCA command 11 to channel 02 with data 00000000
11:07:52.362 SCA command 10 to channel 02 with data 84200028
------------ GPIO 4 set to 1 (FPGA MIDDLE nconfig)
11:07:52.363 SCA command 11 to channel 02 with data 00000000
11:07:52.363 SCA command 10 to channel 02 with data 84200038
------------ Wait 50 ms after any FPGA configuration

------------ GPIO 9 set to 1 (Power_supplies FPGA off)
11:07:52.414 SCA command 11 to channel 02 with data 00000000
11:07:52.415 SCA command 10 to channel 02 with data 84200238
------------ Wait 50 ms after turning off any power supply
------------ GPIO 27 set to 0 (Shutdown 4V)
11:07:52.466 SCA command 11 to channel 02 with data 00000000
11:07:52.467 SCA command 10 to channel 02 with data 84200238
------------ Wait 50 ms after turning off any power supply
------------ GPIO 22 set to 0 (Shutdown 2V)
11:07:52.508 SCA command 11 to channel 02 with data 00000000
11:07:52.509 SCA command 10 to channel 02 with data 84200238
------------ Wait 50 ms after turning off any power supply

------------ GPIO 22 set to 1 (Powerup 2V)
11:07:52.549 SCA command 11 to channel 02 with data 00000000
11:07:52.550 SCA command 10 to channel 02 with data 84600238
------------ Wait 500 ms after turning on 2V
------------ GPIO 27 set to 1 (Powerup 4V)
11:07:53.052 SCA command 11 to channel 02 with data 00000000
11:07:53.052 SCA command 10 to channel 02 with data 8C600238
------------ Wait 500 ms after turning on 4V

------------ Make sure FPGA resets are active (redundant), and turn on FPGA power supply
------------ GPIO 21 set to 1 (FPGA LEFT soft reset)
11:07:53.554 SCA command 11 to channel 02 with data 00000000
11:07:53.555 SCA command 10 to channel 02 with data 8C600238
------------ GPIO 26 set to 1 (FPGA MIDDLE soft reset)
11:07:53.556 SCA command 11 to channel 02 with data 00000000

66

11:07:53.556 SCA command 10 to channel 02 with data 8C600238
------------ GPIO 31 set to 1 (FPGA RIGHT soft reset)
11:07:53.557 SCA command 11 to channel 02 with data 00000000
11:07:53.558 SCA command 10 to channel 02 with data 8C600238

------------ GPIO 9 set to 1 (Power_supplies FPGA ON)
11:07:53.558 SCA command 11 to channel 02 with data 00000000
11:07:53.559 SCA command 10 to channel 02 with data 8C600238

------------ staggered release of FPGA resets

------------ GPIO 21 set to 1 (FPGA LEFT soft reset), redundant
11:07:53.660 SCA command 11 to channel 02 with data 00000000
11:07:53.661 SCA command 10 to channel 02 with data 8C600238
------------ GPIO 21 set to 0
11:07:53.661 SCA command 11 to channel 02 with data 00000000
11:07:53.662 SCA command 10 to channel 02 with data 8C400238
------------ Wait 50 ms after every FPGA reset

------------ GPIO 26 set to 1 (FPGA MIDDLE soft reset), redundant
11:07:53.713 SCA command 11 to channel 02 with data 00000000
11:07:53.714 SCA command 10 to channel 02 with data 8C400238
------------ GPIO 26 set to 0
11:07:53.714 SCA command 11 to channel 02 with data 00000000
11:07:53.715 SCA command 10 to channel 02 with data 88400238
------------ Wait 50 ms after every FPGA reset

------------ GPIO 31 set to 1 (FPGA RIGHT soft reset), redundant
11:07:53.766 SCA command 11 to channel 02 with data 00000000
11:07:53.767 SCA command 10 to channel 02 with data 88400238
------------ GPIO 31 set to 0
11:07:53.767 SCA command 11 to channel 02 with data 00000000
11:07:53.768 SCA command 10 to channel 02 with data 08400238
------------ Wait 50 ms after every FPGA reset

67

======================== Check all sensors sequence =====================

------------ Read GPIO
11:07:53.819 SCA command 01 to channel 02 with data 00000000
------------ Read ADC_RSSI
11:07:53.820 SCA command 50 to channel 14 with data 00000000
11:07:53.820 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_4V_IN
11:07:53.821 SCA command 50 to channel 14 with data 00000015
11:07:53.821 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_4V_IN_CURRENT
11:07:53.833 SCA command 50 to channel 14 with data 0000000D
11:07:53.833 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_2V5_SAFE
11:07:53.834 SCA command 50 to channel 14 with data 00000005
11:07:53.834 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_3V3_VCCIO
11:07:53.846 SCA command 50 to channel 14 with data 00000003
11:07:53.846 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_2V5_VCCIO
11:07:53.847 SCA command 50 to channel 14 with data 00000002
11:07:53.847 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_VH_VCCIO_LEFT
11:07:53.858 SCA command 50 to channel 14 with data 00000011
11:07:53.859 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_VH_VCCIO_MIDDLE
11:07:53.859 SCA command 50 to channel 14 with data 00000012
11:07:53.860 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_VH_VCCIO_RIGHT
11:07:53.860 SCA command 50 to channel 14 with data 00000013
11:07:53.861 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_2V_IN
11:07:53.861 SCA command 50 to channel 14 with data 00000014
11:07:53.862 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_2V_IN_CURRENT
11:07:53.862 SCA command 50 to channel 14 with data 0000000C
11:07:53.863 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V5_SAFE
11:07:53.863 SCA command 50 to channel 14 with data 00000004
11:07:53.864 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V5_VCCIO
11:07:53.875 SCA command 50 to channel 14 with data 00000001
11:07:53.875 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V1_CORE_LEFT
11:07:53.887 SCA command 50 to channel 14 with data 00000006
11:07:53.887 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V1_CORE_MIDDLE
11:07:53.888 SCA command 50 to channel 14 with data 00000007
11:07:53.889 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V1_CORE_RIGHT
11:07:53.889 SCA command 50 to channel 14 with data 00000008
11:07:53.890 SCA command 02 to channel 14 with data 00000001

68

------------ Read ADC_1V1_VCCE_LEFT
11:07:53.890 SCA command 50 to channel 14 with data 00000009
11:07:53.891 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V1_VCCE_MIDDLE
11:07:53.891 SCA command 50 to channel 14 with data 0000000A
11:07:53.892 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_1V1_VCCE_RIGHT
11:07:53.892 SCA command 50 to channel 14 with data 0000000B
11:07:53.893 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_CURRENT_CORE_LEFT
11:07:53.893 SCA command 50 to channel 14 with data 0000000E
11:07:53.894 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_CURRENT_CORE_MIDDLE
11:07:53.894 SCA command 50 to channel 14 with data 0000000F
11:07:53.895 SCA command 02 to channel 14 with data 00000001
------------ Read ADC_CURRENT_CORE_RIGHT
11:07:53.895 SCA command 50 to channel 14 with data 00000010
11:07:53.896 SCA command 02 to channel 14 with data 00000001
------------ LM75_POWER_4V
11:07:53.896 SCA I2C_1 write single byte=00 to addr=48
11:07:53.896 SCA command 82 to channel 04 with data 48000000
11:07:53.907 SCA command DE to channel 04 with data 48000000
11:07:53.919 SCA command 71 to channel 04 with data 00000000
------------ LM75_POWER_2V
11:07:53.919 SCA I2C_1 write single byte=00 to addr=49
11:07:53.919 SCA command 82 to channel 04 with data 49000000
11:07:53.931 SCA command DE to channel 04 with data 49000000
11:07:53.942 SCA command 71 to channel 04 with data 00000000
------------ LM75_FPGA_LEFT
11:07:53.942 SCA I2C_1 write single byte=00 to addr=4A
11:07:53.942 SCA command 82 to channel 04 with data 4A000000
11:07:53.953 SCA command DE to channel 04 with data 4A000000
11:07:53.965 SCA command 71 to channel 04 with data 00000000
------------ LM75_FPGA_MIDDLE
11:07:53.966 SCA I2C_1 write single byte=00 to addr=4B
11:07:53.966 SCA command 82 to channel 04 with data 4B000000
11:07:53.977 SCA command DE to channel 04 with data 4B000000
11:07:53.988 SCA command 71 to channel 04 with data 00000000
------------ LM75_FPGA_RIGHT
11:07:53.988 SCA I2C_1 write single byte=00 to addr=4C
11:07:53.989 SCA command 82 to channel 04 with data 4C000000
11:07:54.000 SCA command DE to channel 04 with data 4C000000
11:07:54.011 SCA command 71 to channel 04 with data 00000000

69

================ FPGA go to application firmware sequence ================

------------ LEFT jumps to application firmware
11:07:54.012 LEFT write [128, 0, 3, 1] @2700
11:07:54.012 LEFT write [0, 1, 4, 1] @2700
11:07:54.012 LEFT write [0, 1, 6, 1] @2700
------------ Wait 50 ms after any FPGA configuration

------------ RIGHT jumps to application firmware
11:07:54.063 RIGHT write [128, 0, 3, 1] @2700
11:07:54.063 RIGHT write [0, 1, 4, 1] @2700
11:07:54.063 RIGHT write [0, 1, 6, 1] @2700
------------ Wait 50 ms after any FPGA configuration

------------ MIDDLE jumps to application firmware
11:07:54.114 MIDDLE write [128, 0, 3, 1] @2700
11:07:54.114 MIDDLE write [0, 1, 4, 1] @2700
11:07:54.114 MIDDLE write [0, 1, 6, 1] @2700
------------ Wait 50 ms after any FPGA configuration

------------ GPIO 21 set to 1 (FPGA LEFT soft reset)
11:07:54.165 SCA command 11 to channel 02 with data 00000000
11:07:54.165 SCA command 10 to channel 02 with data 08600238
------------ GPIO 21 set to 0
11:07:54.166 SCA command 11 to channel 02 with data 00000000
11:07:54.167 SCA command 10 to channel 02 with data 08400238
------------ Wait 50 ms after every FPGA reset

------------ GPIO 26 set to 1 (FPGA MIDDLE soft reset)
11:07:54.218 SCA command 11 to channel 02 with data 00000000
11:07:54.218 SCA command 10 to channel 02 with data 0C400238
------------ GPIO 26 set to 0
11:07:54.219 SCA command 11 to channel 02 with data 00000000
11:07:54.220 SCA command 10 to channel 02 with data 08400238
------------ Wait 50 ms after every FPGA reset

------------ GPIO 31 set to 1 (FPGA RIGHT soft reset)
11:07:54.270 SCA command 11 to channel 02 with data 00000000
11:07:54.271 SCA command 10 to channel 02 with data 88400238
------------ GPIO 31 set to 0
11:07:54.272 SCA command 11 to channel 02 with data 00000000
11:07:54.273 SCA command 10 to channel 02 with data 08400238
------------ Wait 50 ms after every FPGA reset

------------ check MIDDLE communication
11:07:54.324 MIDDLE write [13738, 41342, 15136, 20750, 20941, 64428, 54208, 7328, 60890,
37778, 57854, 32818, 42567, 13685, 27151, 48324] @0000
11:07:54.326 MIDDLE read [13738, 41342, 15136, 20750, 20941, 64428, 54208, 7328, 60890, 37778,
57854, 32818, 42567, 13685, 27151, 48324] @0000
------------ check MIDDLE runs application firmware
11:07:54.326 MIDDLE write [4, 0, 1] @2702
11:07:54.326 MIDDLE read [0, 1] @2711

70

------------ check LEFT communication
11:07:54.326 LEFT write [3207, 54857, 487, 18456, 62389, 53969, 40312, 17975, 43002, 24339,
18922, 58925, 13997, 46836, 57978, 42652] @0000
11:07:54.328 LEFT read [3207, 54857, 487, 18456, 62389, 53969, 40312, 17975, 43002, 24339,
18922, 58925, 13997, 46836, 57978, 42652] @0000
------------ check LEFT runs application firmware
11:07:54.328 LEFT write [4, 0, 1] @2702
11:07:54.328 LEFT read [0, 1] @2711

------------ check RIGHT communication
11:07:54.329 RIGHT write [48470, 18148, 6003, 58381, 43810, 33718, 7184, 37968, 4179, 44195,
29091, 49547, 3426, 60289, 18190, 17882] @0000
11:07:54.330 RIGHT read [48470, 18148, 6003, 58381, 43810, 33718, 7184, 37968, 4179, 44195,
29091, 49547, 3426, 60289, 18190, 17882] @0000
------------ check RIGHT runs application firmware
11:07:54.330 RIGHT write [4, 0, 1] @2702
11:07:54.331 RIGHT read [0, 1] @2711

----------- read firmware versions
11:07:54.331 LEFT read [4] @0011
11:07:54.331 LEFT read [3] @0012
11:07:54.332 LEFT read [0] @0010
11:07:54.332 MIDDLE read [4] @0011
11:07:54.332 MIDDLE read [3] @0012
11:07:54.333 MIDDLE read [1] @0010
11:07:54.333 RIGHT read [4] @0011
11:07:54.333 RIGHT read [3] @0012
11:07:54.334 RIGHT read [2] @0010

11:07:54.334 FEB boot DONE and CHECKED time : 2.09 seconds

71

FEBv2_r2 Data channel mapping

WARNING: Section refers to an old revision of the FEB (FEBv2r2)

Strip n° PETIROC Channel FPGA TDC Channel RStrip n° PETIROC Channel FPGA TDC Channel

15 1 0 15 30 31

14 2 1 14 28 30

13 4 2 13 26 29

12 6 3 12 24 28

11 8 4 11 22 27

10 10 5 10 20 26

9 12 6 9 18 25

8 14 7 8 16 24

7 16 8 7 14 23

6 18 9 6 12 22

5 20 10 5 10 21

4 22 11 4 8 20

3 24 12 3 6 19

2 26 13 2 4 18

1 28 14 1 2 17

0 30 15 0 1 16

Strip n° PETIROC Channel FPGA TDC Channel RStrip n° PETIROC Channel FPGA TDC Channel

31 1 0 31 30 31

30 2 1 30 28 30

29 4 2 29 26 29

28 6 3 28 24 28

27 8 4 27 22 27

26 10 5 26 20 26

25 12 6 25 18 25

24 14 7 24 16 24

23 16 8 23 14 23

22 18 9 22 12 22

21 20 10 21 10 21

20 22 11 20 8 20

19 24 12 19 6 19

18 26 13 18 4 18

17 28 14 17 2 17

16 30 15 16 1 16

Strip n° PETIROC Channel FPGA TDC Channel RStrip n° PETIROC Channel FPGA TDC Channel

47 1 0 47 30 31

46 2 1 46 28 30

45 4 2 45 26 29

44 6 3 44 24 28

43 8 4 43 22 27

42 10 5 42 20 26

41 12 6 41 18 25

40 14 7 40 16 24

39 16 8 39 14 23

38 18 9 38 12 22

37 20 10 37 10 21

36 22 11 36 8 20

35 24 12 35 6 19

34 26 13 34 4 18

33 28 14 33 2 17

32 30 15 32 1 16

For each FPGA: TDC Channel 32 BC0

TDC Channel 33 Resync

PETIROC TOP (Direct Strip)

PETIROC BOTTOM (Return Strip)

PETIROC BOTTOM (Return Strip)

FPGA RIGHT (2)

FPGA MIDDLE (1)

PETIROC TOP (Direct Strip) PETIROC BOTTOM (Return Strip)

FPGA LEFT (0)

FEBv2r2 Strip/PETIROC/TDC channel mapping

PETIROC TOP (Direct Strip)

72

PETIROC configuration reference

WARNING: Section refers to an old revision of the FEB (FEBv2r2)

In the following tab, you can find information on parameters to configure the PETIROC slow control

registers with a proposed (tested) value. The values that need to be controlled/changed accordingly

to the wanted FEBv2_r2 utilization are highlighted in green.

 Name
Bit

index
Size Order

Proposed
value

 mask_discri_charge_ch0 0 1 1

 mask_discri_charge_ch1 1 1 1

 mask_discri_charge_ch2 2 1 1

 mask_discri_charge_ch3 3 1 1

 mask_discri_charge_ch4 4 1 1

 mask_discri_charge_ch5 5 1 1

 mask_discri_charge_ch6 6 1 1

 mask_discri_charge_ch7 7 1 1

 mask_discri_charge_ch8 8 1 1

 mask_discri_charge_ch9 9 1 1

 mask_discri_charge_ch10 10 1 1

 mask_discri_charge_ch11 11 1 1

 mask_discri_charge_ch12 12 1 1

 mask_discri_charge_ch13 13 1 1

 mask_discri_charge_ch14 14 1 1

 mask_discri_charge_ch15 15 1 1

 mask_discri_charge_ch16 16 1 1

 mask_discri_charge_ch17 17 1 1

 mask_discri_charge_ch18 18 1 1

 mask_discri_charge_ch19 19 1 1

 mask_discri_charge_ch20 20 1 1

 mask_discri_charge_ch21 21 1 1

 mask_discri_charge_ch22 22 1 1

 mask_discri_charge_ch23 23 1 1

 mask_discri_charge_ch24 24 1 1

 mask_discri_charge_ch25 25 1 1

 mask_discri_charge_ch26 26 1 1

 mask_discri_charge_ch27 27 1 1

 mask_discri_charge_ch28 28 1 1

 mask_discri_charge_ch29 29 1 1

 mask_discri_charge_ch30 30 1 1

 mask_discri_charge_ch31 31 1 1

 input_dac_ch0 32 8 LSB first 0x80

 cmd_input_dac_ch0 40 1 1

 input_dac_ch1 41 8 LSB first 0x80

 cmd_input_dac_ch1 49 1 1

 input_dac_ch2 50 8 LSB first 0x80

73

 cmd_input_dac_ch2 58 1 1

 input_dac_ch3 59 8 LSB first 0x80

 cmd_input_dac_ch3 67 1 1

 input_dac_ch4 68 8 LSB first 0x80

 cmd_input_dac_ch4 76 1 1

 input_dac_ch5 77 8 LSB first 0x80

 cmd_input_dac_ch5 85 1 1

 input_dac_ch6 86 8 LSB first 0x80

 cmd_input_dac_ch6 94 1 1

 input_dac_ch7 95 8 LSB first 0x80

 cmd_input_dac_ch7 103 1 1

 input_dac_ch8 104 8 LSB first 0x80

 cmd_input_dac_ch8 112 1 1

 input_dac_ch9 113 8 LSB first 0x80

 cmd_input_dac_ch9 121 1 1

 input_dac_ch10 122 8 LSB first 0x80

 cmd_input_dac_ch10 130 1 1

 input_dac_ch11 131 8 LSB first 0x80

 cmd_input_dac_ch11 139 1 1

 input_dac_ch12 140 8 LSB first 0x80

 cmd_input_dac_ch12 148 1 1

 input_dac_ch13 149 8 LSB first 0x80

 cmd_input_dac_ch13 157 1 1

 input_dac_ch14 158 8 LSB first 0x80

 cmd_input_dac_ch14 166 1 1

 input_dac_ch15 167 8 LSB first 0x80

 cmd_input_dac_ch15 175 1 1

 input_dac_ch16 176 8 LSB first 0x80

 cmd_input_dac_ch16 184 1 1

 input_dac_ch17 185 8 LSB first 0x80

 cmd_input_dac_ch17 193 1 1

 input_dac_ch18 194 8 LSB first 0x80

 cmd_input_dac_ch18 202 1 1

 input_dac_ch19 203 8 LSB first 0x80

 cmd_input_dac_ch19 211 1 1

 input_dac_ch20 212 8 LSB first 0x80

 cmd_input_dac_ch20 220 1 1

 input_dac_ch21 221 8 LSB first 0x80

 cmd_input_dac_ch21 229 1 1

 input_dac_ch22 230 8 LSB first 0x80

 cmd_input_dac_ch22 238 1 1

 input_dac_ch23 239 8 LSB first 0x80

 cmd_input_dac_ch23 247 1 1

 input_dac_ch24 248 8 LSB first 0x80

 cmd_input_dac_ch24 256 1 1

 input_dac_ch25 257 8 LSB first 0x80

74

 cmd_input_dac_ch25 265 1 1

 input_dac_ch26 266 8 LSB first 0x80

 cmd_input_dac_ch26 274 1 1

 input_dac_ch27 275 8 LSB first 0x80

 cmd_input_dac_ch27 283 1 1

 input_dac_ch28 284 8 LSB first 0x80

 cmd_input_dac_ch28 292 1 1

 input_dac_ch29 293 8 LSB first 0x80

 cmd_input_dac_ch29 301 1 1

 input_dac_ch30 302 8 LSB first 0x80

 cmd_input_dac_ch30 310 1 1

 input_dac_ch31 311 8 LSB first 0x80

 cmd_input_dac_ch31 319 1 1

 input_dac_ch_dummy 320 8 LSB first 0x80

 mask_discri_time_ch0 328 1 1

 mask_discri_time_ch1 329 1 1

 mask_discri_time_ch2 330 1 1

 mask_discri_time_ch3 331 1 1

 mask_discri_time_ch4 332 1 1

 mask_discri_time_ch5 333 1 1

 mask_discri_time_ch6 334 1 1

 mask_discri_time_ch7 335 1 1

 mask_discri_time_ch8 336 1 1

 mask_discri_time_ch9 337 1 1

 mask_discri_time_ch10 338 1 1

 mask_discri_time_ch11 339 1 1

 mask_discri_time_ch12 340 1 1

 mask_discri_time_ch13 341 1 1

 mask_discri_time_ch14 342 1 1

 mask_discri_time_ch15 343 1 1

 mask_discri_time_ch16 344 1 1

 mask_discri_time_ch17 345 1 1

 mask_discri_time_ch18 346 1 1

 mask_discri_time_ch19 347 1 1

 mask_discri_time_ch20 348 1 1

 mask_discri_time_ch21 349 1 1

 mask_discri_time_ch22 350 1 1

 mask_discri_time_ch23 351 1 1

 mask_discri_time_ch24 352 1 1

 mask_discri_time_ch25 353 1 1

 mask_discri_time_ch26 354 1 1

 mask_discri_time_ch27 355 1 1

 mask_discri_time_ch28 356 1 1

 mask_discri_time_ch29 357 1 1

 mask_discri_time_ch30 358 1 1

 mask_discri_time_ch31 359 1 1

75

 6b_dac_ch0 360 6 LSB first 0x01

 6b_dac_ch1 366 6 LSB first 0x01

 6b_dac_ch2 372 6 LSB first 0x01

 6b_dac_ch3 378 6 LSB first 0x01

 6b_dac_ch4 384 6 LSB first 0x01

 6b_dac_ch5 390 6 LSB first 0x01

 6b_dac_ch6 396 6 LSB first 0x01

 6b_dac_ch7 402 6 LSB first 0x01

 6b_dac_ch8 408 6 LSB first 0x01

 6b_dac_ch9 414 6 LSB first 0x01

 6b_dac_ch10 420 6 LSB first 0x01

 6b_dac_ch11 426 6 LSB first 0x01

 6b_dac_ch12 432 6 LSB first 0x01

 6b_dac_ch13 438 6 LSB first 0x01

 6b_dac_ch14 444 6 LSB first 0x01

 6b_dac_ch15 450 6 LSB first 0x01

 6b_dac_ch16 456 6 LSB first 0x01

 6b_dac_ch17 462 6 LSB first 0x01

 6b_dac_ch18 468 6 LSB first 0x01

 6b_dac_ch19 474 6 LSB first 0x01

 6b_dac_ch20 480 6 LSB first 0x01

 6b_dac_ch21 486 6 LSB first 0x01

 6b_dac_ch22 492 6 LSB first 0x01

 6b_dac_ch23 498 6 LSB first 0x01

 6b_dac_ch24 504 6 LSB first 0x01

 6b_dac_ch25 510 6 LSB first 0x01

 6b_dac_ch26 516 6 LSB first 0x01

 6b_dac_ch27 522 6 LSB first 0x01

 6b_dac_ch28 528 6 LSB first 0x01

 6b_dac_ch29 534 6 LSB first 0x01

 6b_dac_ch30 540 6 LSB first 0x01

 6b_dac_ch31 546 6 LSB first 0x01

 EN_10bits_DAC 552 1 1

 PP_10bits_DAC 553 1 1

 10b_dac_vth_discri_charge 554 10 MSB first 0x000

 10b_dac_vth_discri_time 564 10 MSB first 0x1F4

 EN_ADC 574 1 0

 PP_ADC 575 1 0

 sel_startb_ramp_ADC_ext 576 1 0

 usebcompensation 577 1 0

 EN_bias_DAC_delay 578 1 1

 PP_bias_DAC_delay 579 1 1

 EN_bias_ramp_delay 580 1 0

 PP_bias_ramp_delay 581 1 0

 8b_dac_delay 582 8 LSB first 0x00

 EN_discri_delay 590 1 1

76

 PP_discri_delay 591 1 1

 PP_temp_sensor 592 1 0

 EN_temp_sensor 593 1 0

 EN_bias_pa 594 1 1

 PP_bias_pa 595 1 1

 EN_bias_discri 596 1 1

 PP_bias_discri 597 1 1

 cmd_polarity 598 1 0

 latch_discri 599 1 1

 EN_bias_6b_dac 600 1 1

 PP_bias_6b_dac 601 1 1

 EN_bias_tdc 602 1 0

 PP_bias_tdc 603 1 0

 ON_OFF_input_dac 604 1 1

 EN_bias_charge 605 1 0

 PP_bias_charge 606 1 0

 cf_100fF 607 1 0

 cf_200fF 608 1 0

 cf_2_5pF 609 1 0

 cf_1_25pF 610 1 0

 EN_bias_sca 611 1 0

 PP_bias_sca 612 1 0

 EN_bias_discri_charge 613 1 0

 PP_bias_discri_charge 614 1 0

 EN_bias_discri_adc_time 615 1 0

 PP_bias_discri_adc_time 616 1 0

 EN_bias_discri_adc_charge 617 1 0

 PP_bias_discri_adc_charge 618 1 0

 DIS_razchn_int 619 1 1

 DIS_razchn_ext 620 1 0

 SEL_80M 621 1 0

 EN_80M 622 1 0

 EN_slow_lvds_rec 623 1 1

 PP_slow_lvds_rec 624 1 1

 EN_fast_lvds_rec 625 1 1

 PP_fast_lvds_rec 626 1 0

 EN_transmitter 627 1 0

 PP_transmitter 628 1 0

 ON_OFF_1mA 629 1 1

 ON_OFF_2mA 630 1 1

 NC1 631 1 0

 ON_OFF_ota_mux 632 1 0

 ON_OFF_ota_probe 633 1 0

 DIS_trig_mux 634 1 1

 EN_NOR32_time 635 1 0

 EN_NOR32_charge 636 1 0

77

 DIS_triggers 637 1 0

 EN_dout_oc 638 1 0

 EN_transmit 639 1 0

 PA_Ccomp<0> 640 1 0

2
B

 &
 2

C
 o

n
ly

 PA_Ccomp<1> 641 1 0
 PA_Ccomp<2> 642 1 0
 PA_Ccomp<3> 643 1 1
 NC2 644 1 1
 NC3 645 1 0
 NC4 646 1 0
 Choice_trigger_out 647 1 0

 Delay_reset_trigger 648 4 LSB first 0x0

2
C

 o
n

ly

 NC5 652 1 0

 NC6 653 1 0

 NC7 654 1 0

 En_reset_trigger_delay 655 1 0

 Delay_reset_ToT 656 4 LSB first 0x0

 NC8 660 1 0

 NC9 661 1 0

 NC10 662 1 0

 EN_reset_ToT_delay 663 1 0

78

PETIROC channel auto-reset module (OLD FW ONLY)

WARNING: This feature is removed for FEB FW v4.0 and higher

Only PETIROC 2C with internal auto-reset is supported with the last FW.

PETIROC 2A and PETIROC 2B ASICs do not implement internal automatic reset for their trigger system. Once a

signal is detected for one of its channels and the corresponding trigger is transmitted to the FPGA, the channel

is not active until a reset sequence is applied on the dedicated pins of the PETIROC. FPGAs implement a

configurable state machine in order to automatize this sequence.

This channel reset sequence is common for every channel of a PETIROC ASIC. This introduces two major

constraints:

• During the reset sequence every channel is inhibited (even the ones that have not been triggered),

causing a dead time for the whole PETIROC.

• Before resetting, system needs to be sure the trigger generated from the other side of the strip has been

received by the TDC. It was decided to manage this problem by adding a waiting stage, before the actual

reset stages within the state machine.

PETIROC pins
This mechanism relies on three PETIROC pins: the NOR32 output pin, which indicates at least one trigger occurred

in the ASIC and the RAZ_CHN and VAL_EVT input pins, which are used to command the channel reset.

• NOR32: When low, this signal indicates that at least one of the PETIROC channels is triggered.

• RAZ_CHN: Active low reset of the PETIROC channel triggers.

• VAL_EVT: When low, the PETIROC channels are masked (disabled) and they can’t be triggered even if

there is a signal coming from the strips.

State machine sequencing

• IDLE: All channels are untriggered, reset pins are inactive.

• Stage 1: At least one trigger has been sent to the FPGA TDC, this is a waiting state to be sure the signal

from the other side of the strip has been captured.

• Stage 2: PETIROC trigger outputs are reset, and every channel of the ASIC are disabled.

• Stage 3: Reset signal is deasserted but the channel masking is still active to prevent problem of

retriggering.

Minimal duration for each state:
IDLE: 5ns
Stage 1: 15ns
Stage 2: 5ns
Stage 3: 5ns

It is possible to increase the duration of Stage 1, Stage 2 and Stage 3 by adding 5ns steps by the dedicated slow

control registers. Especially, it is recommended to set the total duration of Stage 1 to 30ns (=add 3 steps) in order

to be sure that the signal from the opposite side of the strip has been correctly processed before the reset.

NOR32 from PETIROC

RAZ_CHN to PETIROC

VAL_EVT to PETIROC

SM State Stage 2 Stage 3IDLE Stage 1 IDLE

