New Leaktest Procedure

Alexis FAGOT 31th of January 2013

Department of Physics and Astronomy

History of the different Pressure Drop cuts used

Gap Type	RE4/3 TW	RE4/3 TN	RE4/3 B
Pressure Drop (mbar/10min) to be certified with +20mbar (CERN)	0,1	0,3	0,4
Pressure Drop (mbar/10min) to be certified with +20mbar - 10 th of May (KODEL)	0,3	0,4	0,5
Pressure Drop (mbar/10min) to be certified with +20mbar - 23 rd of October (KODEL)	0,2	0,3	0,4
Discussion about new possible cuts for all the sites	0,2	0,2	0,2

New procedure for the leaktest

The new leaktest procedure is the following:

- 1. Increasing of the pressure until 5mbar
- 2. Wait 600s to obtain the system stability
- 3. Leak test at 5mbar during 500s
- 4. Increasing of the pressure until 20mbar
- 5. Wait 600s to obtain the system stability
- 6. Leak test at 20mbar during 500s
- 7. Spacer test at 20mbar (at the end in order to not perturb the leaktest)

Choice of the optimal measurement time

10 independent measurements were realized.

11 windows from 100 to 1100s were opened starting from the end of each measurement. For each window width has been performed a calculation of the Mean Pressure Drop which gives:

Definition of a tolerance on measurements

Pressure Drop values for 20 measurements - RE4/3 TN018

The results are contained in windows of 0.1mbar

Gap Type	TW	TN	В
Pressure Drop (mbar/10min) to be certified with +20mbar for RE4/3	(0.2+0.1)	(0.3+0.1)	(0.4+0.1)
Pressure Drop (mbar/10min) to be certified with +20mbar for RE4/2	(0.2+0.1)	(0.2+0.1)	(0.3+0.1)

Backup

A New Procedure?

1st: +5mbar leaktest

Decrease P = decrease T : the system temperature will increase until the stabilization.

Increase P = increase T : the system temperature will decrease until the stabilization.

To be consistent with the +20mbar leaktest, a procedure where T decrease until the stabilization has to be chosen.

2nd: Slope calculation over 500s

Windows from 100s to 1100s are opened from the end.

Convergence from 1100s to 500s. Smaller windows depend on fluctuations.

2nd: Slope calculation over 500s

Dispersion of the data points around the 500s fit line (fit line = x-axis)

Precision of the pressure transmitter used = 1,25%Error on P measurement $\Delta P \sim 0,3$ mbar at +20mbar

Error on the slope if a fit with the 2 extremal points of the window was used:

ASIONE ~ 2AP/At = 0.0012mbar/s >> 0.000038mbar/s

 $\Delta Slope \sim 2\Delta P/\Delta t = 0,0012 mbar/s >> 0,000038 mbar/s$ Where Δt is the interval between the 2 points

Error on the slope with the Least Squares Method : $\Delta Slope \sim 0,000002 mbar/s$

Dispersion of the points around the fit line $\sigma = 0.005$ mbar

Infinite leaktest

Infinite leak tests on Top Narrows

Pressure vs Time - RE4/3 TN018

20 windows were opened over 10000s after the firsts 600s. 20 slopes were computed giving 20 values of the Pressure Drop (mbar/10min). This result to be compared with the pressure drop measured with a 10000s window.

