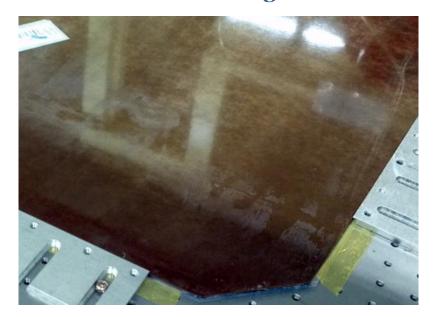
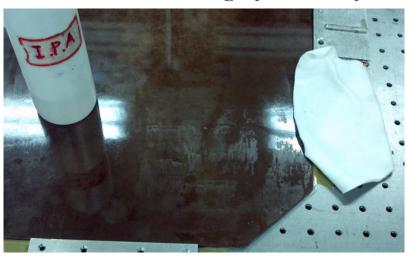
Production status of Test Gaps for RE4 RPCs in Upscope

K. S. Lee, S. Park @KODEL

Contents


- 1. Oil dirt on HPL surfaces
- 2. Oiled layers
- 3. Silk data for RE4/2 test gaps
- 4. First HV data for RE4/2 test gaps

1. Oil dirt on HPL surfaces


Checked that oil dirt remained on all the HPLs (all batches)

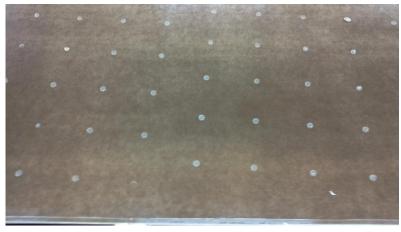
- Found that the stripe pattern created by the cleaning procedure was barely visible and just partially performed.
- At some places of the HPL sheets, the oil dirt still remained was thick.

Before cleaning

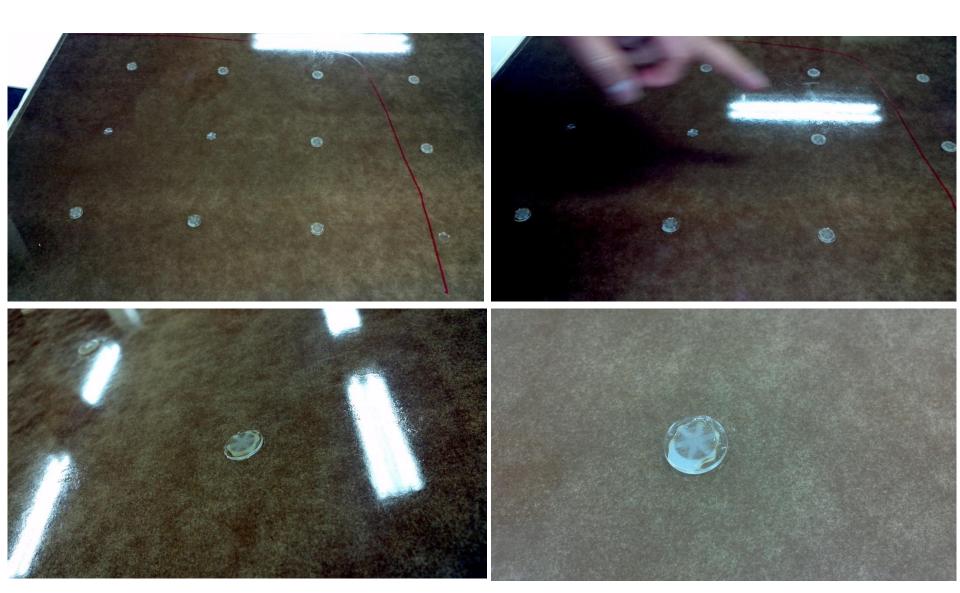
After cleaning by IPA only

After cleaning by thinner

2. Oiled layers


- Opened a RE4/2 test bottom gap (HPLs from batch 12)
- The bonding strength seems to be good enough, but the surface layer of the HPLs were easy detached like a stacked paper layer. (HPLs are mechanically fragile!)
 - -> Phenol resin seems to be very poorly smeared into the craft papers. Spacers were detached due to lack of the rigidity of the HPLs
- Places where the phenol resin was well smeared -> dark
 Otherwise -> bright and having microscopic bright spots





- We expect that the oil pattern could be nicely formed only when the oil/heptane is well attached on the phenol-covered surface of the HPL.
- Bad condensation of the oil could be due to two different factors
 - 1) Oil dirt (microscopically thin layer remained even after cleaned by IPA and thinner) (Still greasy even after cleaning by thinner & IPA)
- 2) Poor condition of smeared phenol resin into the craft papers (The color is brighter and having white microscopic spots)

Bad oiled patterns especially on the places that the phenol was poorly smeared.



Good oiled patterns on the places that the phenol was relatively well smeared.

3. Silk data for RE4/2 test gaps

- Mean value of the graphite surface resistivity = 191.6 \pm 26.0 (sigma) $k\Omega/square$ The desirable value lies bet. 50 \sim 200 $k\Omega/square$ The value seems to be \sim twice larger due to cold weather (the temperature ranged 10 \sim 15 °C) The temperature was NOT well controlled during the January shutdown period.

	A	D	C	U	E	Г	G							
1	Bakelite Code	Production Number	Production Batch	1	В	TN	TW	27	6A12E111019010424	424	12	1	90	167
2	1A12E111019010399	399	12		170			28	6B12E111019010425	425	12	1	97	201
3	1B12E111019010400	400	12		211			29	6C12E111019010426	426	12	1	82	145
4	1C12E111019010401	401	12		184			30	6D12E111019010427	427	12	2	11	186
5	1D12E111019010402	402	12		193			31	6E12E111019010428	428	12	2	13	
6	1E12E111019010403	403	12		233			32	7A12E111019010429	429	12	2	04	193
7	2A12E111019010404	404	12		170			33	7B12E111019010430	430	12	2	07	137
8	2B12E111019010405	405	12		214			34	7C12E111019010431	431	12		79	180
9	2C12E111019010406	406	12						7D12E111019010432	432	12		05	202
	2D12E111019010407	407	12		239				7E12E111019010433	433	12		10	165
	2E12E111019010408	408	12		247				8A12E111019010434	434	12		85	136
	3A12E111019010409	409	12		161				8B12E111019010435	435	12		66	193
	3B12E111019010410	410	12		187				8C12E111019010436	436	12		49	199
	3C12E111019010411	411	12		201				8D12E111019010437	437	12		10	207
	3D12E111019010412	412	12		169				8E12E111019010437	437	12			168
	3E12E111019010413	413	12		176								95	
	4A12E111019010414	414	12		211				9A12E111019010439	439	12		67	230
18	4B12E111019010415	415	12		214				9B12E111019010440	440	12		95	220
19	4C12E111019010416	416	12		185				9C12E111019010441	441	12		80	187
20	4D12E111019010417	417	12		132				9D12E111019010442	442	12		13	213
21	4E12E111019010418	418	12		165			46	9E12E111019010443	443	12	2	20	226
22	5A12E111019010419	419	12		151			47	0A12E111019010444	444	12	2	15	201
23	5B12E111019010420	420	12		189			48	0B12E111019010445	445	12	2	03	137
24	5C12E111019010421	421	12		220			49	0C12E111019010446	446	12	2	02	145
25	5D12E111019010422	422	12					50	0D12E111019010447	447	12	2	15	230
26	5E12E111019010423	423	12		204			51	0E12E111019010448	448	12			195
20	JL12L111013010423	423	12		204			51	0E12E111019010448	448	12			

4. First HV data for RE4/2 test gaps

at 9.6 kV

at t = 120 h

2.0 µA

RE4/3 TW

2.0 µA

2.0 µA

RE4/3 TN

3.5 µA

3.5 µA

RE4/3 B

5.0 µA

/(120h)

0.06

(120h)//(63h) < 1.5

certified

18

17

18

9.37

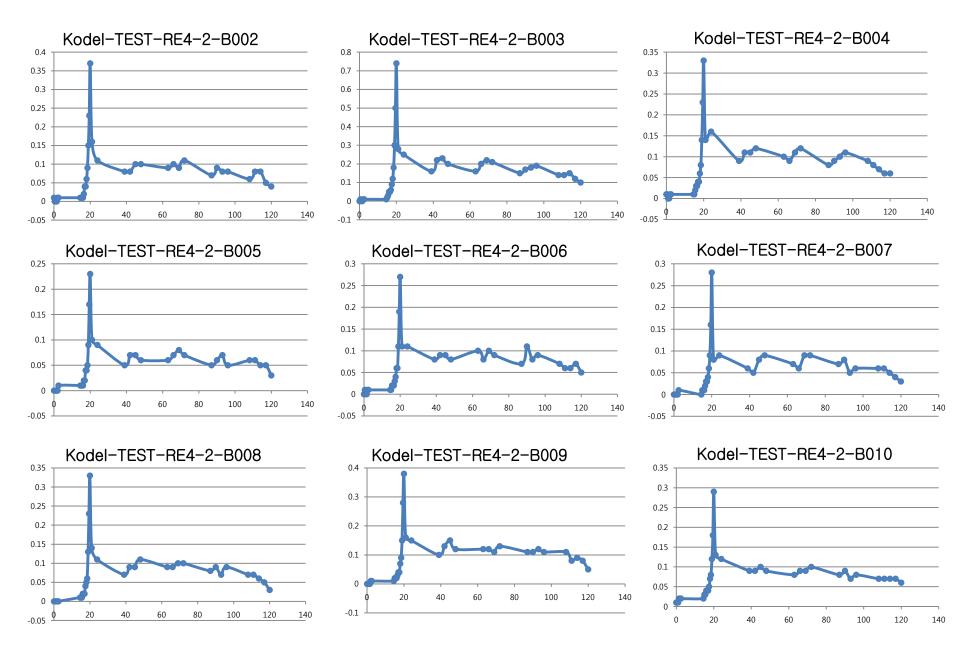
9.36

9.35

0.07

0.07

0.06


23

24

23

 $HV_0(293 K, 1013 hPa) = HV_{applied} \frac{1013 hPa}{D}$ - The first HV test for 10 RE4/2 test 4. HV tests bottom gaps was very successful. Mixture Total gas rate = //h Feb. 07. 2012 Starting date of test Circulation bfr HV = 26 h 0.95 Freon 0.05 i-Bu Time from test start P (hPa) T (°C) HV₀ (kV) I_ini (μΑ) I_final (μΑ) (kV) - One gap was disconnected from Feb. 07, 2012 / 0.0 h 1021.5 1 0.98 19:00 HV cabling at somewhere 0.5 h 19:30 1021.5 18 2 1.97 0.01 0.01 1.0 h 20:00 1021.5 3 2.95 0.01 -> **drop** it ! 1.5 h 20:30 1022.3 18 3.94 0.02 0.01 4 2.0 h 21:00 1023.3 18 5 4.92 0.02 0.02 6.0 12 2.5 h 21:30 1023.3 5.9 0.02 0.02 - All the rest 9 gaps were QC certified! test Feb. 08, 2012 14.5 h 1022.8 17 7 6.86 0.02 0.02 09:30 15.0 h 1022.8 7.5 7.4 0.03 0.03 22 15.5 h 20 10:30 1022.8 8 7.92 0.03 0.03 21 - At 6.0 kV, $i \sim 0.2 \mu A$ for all the gaps 16.0 h 11:00 1022.8 20 8.4 8.32 0.04 0.04 21 At 10. okV, maximum $i = 0.74 \mu A$ 16.5 h 11:30 1022.9 20 8.6 8.52 0.04 0.04 21 17.0 h 12:00 1022.9 20 8.8 8.71 0.04 0.04 21 i(120h)/i(63h) < 1.0 for all the gap 17.5 h 1022.4 9 8.92 12:30 0.05 0.05 18.0 h 13:00 1022.4 20 9.2 9.11 0.07 0.05 18.5 h 13:30 1021.4 9.4 9.32 0.08 0.07 19.0 h 14:00 1021.4 20 9.6 9.52 0.12 0.13 - But we expected the currents of the test 19.5 h 14:30 1020.8 9.8 9.72 0.22 0.18 21 20.0 h 15:00 1020.8 20 10 9.92 0.29 0.29 21 gaps should be much smaller than the 21.0 h 16:00 1020.8 20 9.6 9.53 0.13 21 24.0 h 19:00 1022.3 9.48 0.12 normal gaps to be built with a right 19 23 Feb. 09, 2012 39.0 h 1027.9 18 9.4 0.09 23 resistivity range! (the resistivity of the 10:00 42.0 h 13:00 1026.1 20 9.48 0.09 21 45.0 h 16:00 1025.5 9.48 HPLs in batch 12 is much higher) 48.0 h 19:00 1024.9 19 9.46 0.09 Feb. 10, 2012 / 63.0 h 1027.5 24 9.48 21 OC decision **Current Limits** RE4/2 TW RE4/2 TN RE4/2 BT i(14.5h) at 6.0 kV 20 0.09 96 h 9.49 0.09 at 6.0 kV 1.5 µA 1.5 µA 1.5 µA 18 9.42 0.1 RE4/3 TW RE4/3 TN RE4/3 B 0.02 17 9.34 0.08 1.5 µA 1.5 µA 1.5 µA Certified 0 **Current Limits** RE4/2 TW RE4/2 TN RE4/2 B i(20h) at 10.0 kV 20 9.45 0.09 21 20 9.46 0.07 21 at 10.0 kV 5.0 µA 5.0 uA 10.0 uA Final 21 RE4/3 TW RE4/3 TN RE4/3 B 20 9.45 0.08 0.29 Decision 5.0 µA 5.0 µA 10.0 µA 17 9.32 0.07 24 RE4/2 TW RE4/2 TN RE4/2 B **Current Limits** i(63h)0.08 18 9.35 0.07 23

Set at 10.0 kV at t = 20.0 h, and at 9.6 kV from 21 to 120 h for the long-term test.

