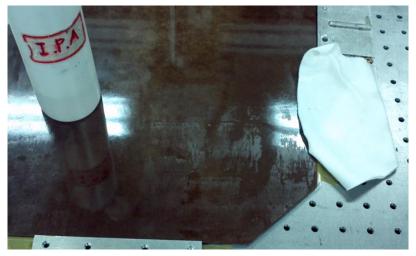
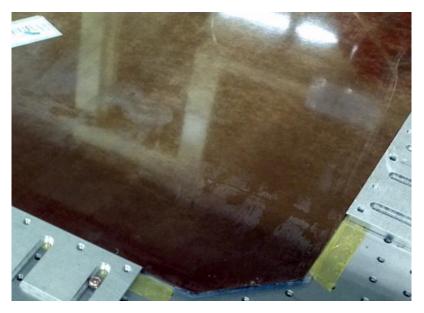
Production status of Test Gaps for RE4 RPCs in Upscope

J. H. Bae, M. H. Kang, Y. K. Jeng, K. S. Lee, S. Park, S. S. Shin, & J. Yoon @ KODEL

Contents


- 1. Oil dirt on HPL surfaces
- 2. Oiled layers
- 3. Silk data for RE4/2 test gaps
- 4. First HV data for RE4/2 test gaps

1. Oil dirt on HPL surfaces


Checked that oil dirt remained on all the HPLs (all batches)

- Found that the stripe pattern created by the cleaning procedure was barely visible and just partially performed.
- At some places of the HPL sheets , the oil dirt still remained was thick.

After cleaning by IPA only

Before cleaning

After cleaning by thinner

2. Oiled layers

- Opened a RE4/2 test bottom gap (HPLs from batch 12)

- The bonding strength seems to be good enough, but the surface layer of the HPLs were easy detached like a stacked paper layer. (HPLs are mechanically fragile !)
- -> Phenol resin seems to be very poorly smeared into the craft papers. Spacers were detached due to lack of the rigidity of the HPLs
- Places where the phenol resin was well smeared -> dark
 Otherwise -> bright and having microscopic bright spots



- We expect that the oil pattern could be nicely formed only when the oil/heptane is well attached on the phenol-covered surface of the HPL.
- Bad condensation of the oil could be due to two different factors
- 1) Oil dirt (microscopically thin layer remained even after cleaned by IPA and thinner) (Still greasy even after cleaning by thinner & IPA)
- 2) Poor condition of smeared phenol resin into the craft papers (The color is brighter and having white microscopic spots)

Bad oiled patterns especially on the places that the phenol was poorly smeared.

Good oiled patterns on the places that the phenol was relatively well smeared.

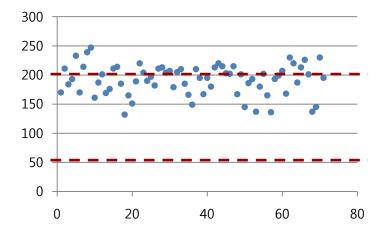
Gap produced with new HPLs

Gap produced with old HPLs

0

1

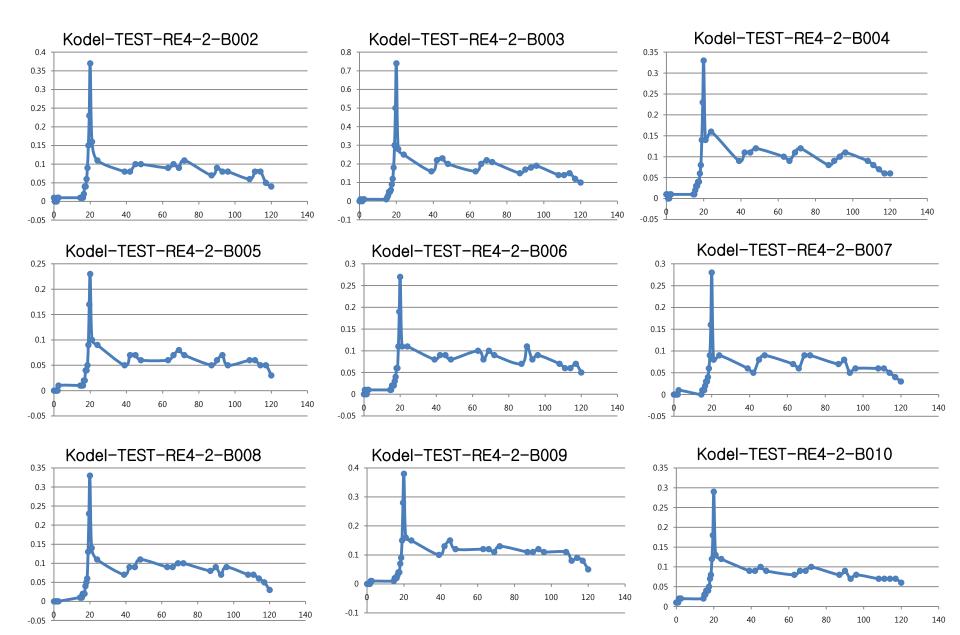
0


-

3. Silk data for RE4/2 test gaps

- Mean value of the graphite surface resistivity = 191.6 \pm 26.0 (sigma) k Ω /square The desirable value lies bet. 50 ~ 200 k Ω /square The value seems to be ~ twice larger due to cold weather (the temperature ranged 10 ~ 15 °C) The temperature was NOT well controlled during the January shutdown period.

	A	В	С	D	E	F	G						
1	Bakelite Code	Production Number	Production Batch	1 I	В	TN	TW	27	6A12E111019010424	424	12	190)
2	1A12E111019010399	399	12		170			28	6B12E111019010425	425	12	197	1
3	1B12E111019010400	400	12		211			29	6C12E111019010426	426	12	182	2
4	1C12E111019010401	401	12		184			30	6D12E111019010427	427	12	211	
5	1D12E111019010402	402	12		193			31	6E12E111019010428	428	12	213	1
6	1E12E111019010403	403	12		233			32	7A12E111019010429	429	12	204	t I
7	2A12E111019010404	404	12		170			33	7B12E111019010430	430	12	207	,
8	2B12E111019010405	405	12		214			34	7C12E111019010431	431	12	179)
9	2C12E111019010406	406	12					35	7D12E111019010432	432	12	205	
	2D12E111019010407	407	12		239			36	7E12E111019010433	433	12	210	
11	2E12E111019010408	408	12		247			37	8A12E111019010434	434	12	185	
12	3A12E111019010409	409	12		161					435	12	166	
13		410			187				8C12E111019010436	436	12	149	
14	3C12E111019010411	411	12		201				8D12E111019010437	430	12	210	
15	3D12E111019010412	412	12		169				8E12E111019010438	437	12	195	
16		413	12		176				9A12E111019010438				
17	4A12E111019010414	414	12		211					439	12	167	
18	4B12E111019010415	415	12		214					440	12	195	
19		416			185				9C12E111019010441	441	12	180	
20	4D12E111019010417	417	12		132				9D12E111019010442	442	12	213	
21	4E12E111019010418	418	12		165				9E12E111019010443	443	12	220	
22		419			151			47	0A12E111019010444	444	12	215	
23	5B12E111019010420	420			189			48	0B12E111019010445	445	12	203	3
24	5C12E111019010421	421	12		220			49	0C12E111019010446	446	12	202	2
25		422	12					50	0D12E111019010447	447	12	215	i .
26	5E12E111019010423	423	12		204			51	0E12E111019010448	448	12		:


4. First HV data for RE4/2 test gaps

- The first HV test for 10 RE4/2 test bottom gaps seems to be good.
- One gap was disconnected from HV cabling at somewhere -> drop it !
- All the rest 9 gaps were QC certified !
- At 6.0 kV, $i \sim 0.2 \mu$ A for all the gaps At 10. okV, maximum $i = 0.74 \mu$ A i(120h)/i(63h) < 1.0 for all the gap
- But we expected the currents of the test gaps should be smaller than the normal gaps to be built with a right resistivity range ! (the resistivity of the HPLs in batch 12 is highe
- The good HV test results for just 7 days results do not guarantee long-term stability without solving oil problem.

							40.0 11	
QC decision	Current Limits	RE4/2 TW	RE4/2 TN	RE4/2 BT	<i>i</i> (14.5h) at	6.0 kV		
	at 6.0 kV	1.5 μA	1.5 μA	1.5 μA				
		RE4/3 TW	RE4/3 TN	RE4/3 B	0.02			
		1.5 μA	1.5 μA	1.5 μA	1			Cer
	Current Limits	RE4/2 TW	RE4/2 TN	RE4/2 B	<i>i</i> (20h) at 1	0.0 kV	Final Decision	
	at 10.0 kV	5.0 µA	5.0 μA	10.0 µA				
		RE4/3 TW	RE4/3 TN	RE4/3 B	0.29)		
		5.0 μA	5.0 μA	10.0 µA				
	Current Limits	RE4/2 TW	RE4/2 TN	RE4/2 B	<i>i</i> (63h)	i(63h) 0.08		
	at 9.6 kV	2.0 μA	2.0 μA	3.5 µA	<i>i</i> (120h)	0.06		
	at t = 120 h	RE4/3 TW	RE4/3 TN	RE4/3 B	Criterion			Cert
		KE4/S TW	NE4/5 TN	NE4/5 B	<i>i</i> (120h)/ <i>i</i> (63	h) < 1.5		Cert
		2.0 μA	3.5 μA	5.0 μA	0.75			

	4. HV tests					$HV_{6}(293K,1013hP_{0}) = HV_{syplicit}\frac{1013hP_{0}}{P}\frac{T}{293K}$									
								07.0045		Total	gas rate =	Gas	Mixture		
		Starting date of test					Feb. 07, 2012			Circulat	ion bfr HV	= 26 h	0.95 Freon	0.05 i-Bu	
			e from test star	t Date/ Ti	fime P		₽ (hPa)	7 (°C)		HV _{applled} (kV)	HV₀(kV)	I_ini (µA)	I_final (μA)	Н (%)	
			0.0 h	Feb. 07, 2 19:00		1021.5		18		1	0.98	0.01	0	23	
			0.5 h	19:30		1	1021.5	18		2	1.97	0.01	0.01	23	
			1.0 h	20:00		1	1021.5	18	3	2.95	0.01	0	23		
			1.5 h	20:30	20:30		1022.3	18		4	3.94	0.02	0.01	23	
			2.0 h	21:00	0 1		1023.3	18		5	4.92	0.02	0.02	23	
			2.5 h	21:30	30		1023.3	18		6.0 12 h test	5.9	0.02	0.02	23	
			14.5 h		Feb. 08, 2012 / 09:30		1022.8	17		7	6.86	0.02	0.02	24	
			15.0 h	10:00)	1	1022.8	19		7.5	7.4	0.03	0.03	22	
			15.5 h	10:30	10:30 11:00 11:30 12:00		1022.8	20 20 20 20 20		8 8.4 8.6 8.8	7.92 8.32 8.52	0.03	0.03 0.04 0.04 0.04	21	
p	S		16.0 h	11:00			1022.8					0.04 0.04 0.04		21 21	
•			16.5 h	11:30			1022.9								
			17.0 h	12:00			1022.9				8.71			21	
igher)			17.5 h	12:30)	1022.4		20		9	8.92	0.05	0.05	21	
			18.0 h	13:00	13:00		1022.4	20		9.2	9.11	0.07		21	
			18.5 h	13:30	30		1021.4	20		9.4	9.32	0.08	0.07	21	
-8	igner)		19.0 h	14:00	14:00		1021.4	20		9.6 9	9.52	0.12	0.13	21	
			19.5 h	14:30		1	1020.8	20		9.8	9.72 0.18	0.18	0.22	21	
	1.		20.0 h	15:00	15:00		1020.8	20		10	9.92	0.29	0.29	21	
JU	ılts		21.0 h	16:00	16:00		1020.8	20		9.6	9.53	0.13		21	
_			24.0 h	19:00	19:00		1022.3	19			9.48	0.12		23	
π	ıt		39.0 h	Feb. 09, 2 10:00		1	1027.9	18			9.4	0.09		23	
			42.0 h	13:00		1	026.1	20			9.48			21	
			45.0 h	16:00	16:00		1025.5	20			9.48	0.1		21	
			48.0 h	19:00		1	1024.9	19			9.46	0.09		22	
	<i>i</i> (14.5h) a	h) at 6.0 KV					27.5	18			9.4	0.08		24	
							25.6	20			9.48	0.09		21	
	0.0					24.6	20		96 h	9.49	0.09		23		
			Certified		6		25.2	18		test	9.42	0.1	×	23	
	<i>i</i> (20h) at	10.0 kV		centined			30.6	17			9.34	0.08		24	
			ן ר				29.4	20			9.45	0.09		21	
-	0.2	29	Final			28.3		20			9.46	0.07		21	
_	0	23	Decision				28.9	20			9.45	0.08		21	
_	<i>i</i> (63h)	0.08	-				32.5	17			9.32 0.07	0.07		24	
-							32.5	18			9.35	0.07		23	
	<i>i</i> (120h)	0.06	_	Not			31.1	18			9.37	0.07		23	
	Crite	erion		certified			28.1	17			9.36	0.07]	24	
	i(120h)/i(63h) < 1 0,75		5	certified			32.5	18			9.35	0.06		23	
			1					-				,			
0.75															

Set at 10.0 kV at t = 20.0 h, and at 9.6 kV from 21 to 120 h for the long-term test.

5. Conclusion & discussions

1) Conclusions

- The condition for the oiled surfaces looks too poor compared to the previous gaps produced in the old production.

- Cleaning thinner & IPA is NOT a right solution for the delivered HPLs.

The cleaning procedure might not properly done for the current HPL delivered on the last December.
 For the next HPLs to be delivered to KODEL, we ask the same cleaning process done for the old HPLs used in the previous gap production.

The surface resistivity should be in a range from 50 to 200 kOhm/square.
 Temperature control problem will be fixed.

2) Discussions

- What do we do for the other HPLs to be used for the gap production ?