Introduction to Gas Detectors

P. Vitulo

Dipartimento di Fisica Nucleare e Teorica Università di Pavia & INFN Pavia

Outlook

- Basics (statistics of the ionization processes)
- Monte Carlo simulation of the basic processes
- Drift of electrons in gas; diffusion and attachment
- Avalanche formation
- Secondary effects on the development of the avalanche
- Signal generation: the Ramo's Theorem
- (Ionization, Proportional and Geiger-Muller counters)
- Resistive Plate Counters
- Resistive Plate Counters
- (Ionization, Proportional and Geiger-Muller counters)
- Signal generation: the Ramo's Theorem
- Secondary effects on the development of the avalanche
- Avalanche formation

Gas Detectors

1) The gas mixture represents the sensitive medium

- 2) The moving of the charge developed inside the detector starting from the primary ionization represents the signal
- 3) We need to increase this charge to "see" the signal
- 4) This can be done with 2 geometrical configurations (and an electric field..)

Gas Detectors.....cylindrical geometry

Electron clusters produced at different radii "see" a different electric field

$$E = \frac{V}{r \ln \frac{b}{a}}$$

The signal is the contribution of <u>subsequent</u> avalanches (i.e. at different time)

Gas Detectors.....parallel geometry

0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 0 20 40 60 80 Time (A.U.) All the clusters "see" the same electric field !

$$E = \frac{V}{d}$$

The signal is the <u>simultaneous</u> contribution of every avalanche (that can reach the right dimension inside the gap)

In any case they are based on the work done by an electric field on the free e- (-ve and +ve ions) inside the gas after the primary ionization due to the passage of a charged particle.

So the story begins with .. a) the <u>interaction of a charged particle</u> within the gas where it ionizes the gas molecules by losing energy through successive collisions

Probability of releasing an electron with energy E

- $P(E)dE \approx \frac{dE}{E^2}$
- Energy loss:
 E-E' = ∆E
- Specific energy loss (or Stopping power):
 △E/∆x

Primary Ionization

The ionization process is a statistic process. The collisions with the gas atoms are randomly distributed and characterized by a <u>mean free path</u>

 $\lambda_I = \frac{A}{N_A \rho \sigma_I}$

- N_A Avogadro number (moli⁻¹)
- ρ gas density (gr cm⁻³)
- A gas mass number (gr moli⁻¹)

 σ_I ionization cross section (cm²)

So the "average number of collisions" along a path L will be $\mu = \frac{L}{\lambda_I}$

This is the average value but it "fluctuates" around a distribution (Poisson)

$$P(\mu,k) = \frac{\mu^k}{k!} e^{-\mu}$$

That gives the probability of having k collisions when the average is μ so this is the probability distribution of the primary ionization.

It is interesting to calculate the figure \rightarrow that is an estimate of the inefficiency of a detector!

$$P(\frac{L}{\lambda}, 0) = e^{-\frac{L}{\lambda}} = 1 - \varepsilon$$

GAS (STP)	Helium	Argon	Xenon	CH ₄	DME
dE/ dx (keV/ cm)	0.32	2.4	6.7	1.5	3.9
n (ion pairs/ cm)	6	25	44	16	55

$$\lambda = \frac{1}{n} = \frac{1}{25} = 0.04 \text{ cm}$$

$$\mu = \frac{L}{\lambda} = Ln = 25 \Longrightarrow$$

average number of collisions in L

..ok good ..can we reduce the thickness? →

....not too much!!

An Ar detector 1 cm wide will have an inefficiency \rightarrow

$$1 - \varepsilon = P(\frac{L}{\lambda}, 0) = 1.5 \times 10^{-11}$$

$$L = 1 \text{ mm}, \ \mu = \frac{L}{\lambda} = \frac{0.1}{0.04} = 2.5$$
$$1 - \varepsilon = P(\frac{L}{\lambda}, 0) = e^{-\mu} = 0.08 = 8\% !!$$

How is the distribution between subsequent ionizations?

Particle track

$$f(l)dl = P(\frac{l}{\lambda}, 0) \times \frac{dl}{\lambda} = e^{-\frac{l}{\lambda}} \times \frac{dl}{\lambda}$$

The probability of having an ionization after a path I centered in dl

 $l = -\lambda \ln(1 - RND)$

 $f_N(l) = \frac{1}{\lambda} e^{-\frac{l}{\lambda}}$

MCarlo simulation

Exponentially distributed

dl

2-

Particle's Range

Measure Nout/Nin after a thickness z of material and take the thickness at 50% of the output

Or Numerically (for electrons):

$$R_{B} = \int_{E_{in}}^{0} \frac{1}{(dE/dx)} dE$$

$$-\frac{dE}{dx} (keV/cm) = 7.85 \times 10^{4} \frac{Z}{A} \frac{\rho}{E} \ln(1.165 \frac{E}{I_{av}})$$

$$\rho(g/cm^{-3}) \quad , \frac{Z}{A}, I_{av} \quad \text{targetdensity}, \frac{\text{atomicnum}}{\text{atomic weight}}, \text{averageion. potential of targetatoms}$$

$$I_{av} = 9.76Z + 58.5Z^{-0.19} \times 10^{-3} \cong 0.0115Z(keV)$$

Stopping Power via Montecarlo

$$w \left\langle N_p \right\rangle = L \left\langle \frac{dE}{dx} \right\rangle$$

Based on this formula, ie. the total average energy loss is equal to the stopping power time the track length

Primary Ionization exponentially distributed (see before...)

Interaction follows 1/E² distribution and

energy loss is at max E_{end} - E_{ion}

If Rnd=O(1) E_{prim}=O(E_{end}-E_{ion})

Also secondary electrons can be created

<u>Montecarlo results:</u> stopping power of a charged particle in Argon gas. Comparison between small and large thickness

Drift of electrons in gas

Once the primary ionization is created by a crossing particle into the active volume the created electrons and positive ions start to recombine each other if they are not subjected to a driven force that separate them and possibly initiate the multiplication process. <u>That's why an electric field is always used</u>. The intensity of the field (i.e. the applied voltage) rules the various amplification mechanisms in the gas.

Drift...

If E=O thermal diffusion makes the electrons and ions to recombine. If an electric field is applied electrons and ions have a net displacement in the direction of the applied field (superimposed to the always present random-directional movement)

ELECTRIC FIELD E = 0: THERMAL DIFFUSION

ELECTRIC FIELD E > 0: CHARGE TRANSPORT AND DIFFUSION

Let's complicate this...in experiments a B field is also present (to measure the particles momenta).

In any case this is the case of an object (electron) moving in a frictional medium (the gas) with external forces (E and B).

The Langevin Equation gives us the response:

 $=eE + eu \wedge B - ku$ m_{-}

Drift...

$$m\frac{d\vec{u}}{dt} = e\vec{E} + e\vec{u} \wedge \vec{B} - k\vec{u}$$

$$\frac{\vec{u}}{\tau} = \frac{e}{m} \left[\vec{E} + \vec{u} \wedge \vec{B} \right]$$

m, $e \rightarrow mass$ and charge of the particle Ku \rightarrow friction force (due to the collisions) Dividing by m and considering the system at equilibrium (du/dt = 0) we end up with: where we put $\tau = m/k$ (which is a characteristic time). By letting $\omega_x = e/m B_x$ $\varepsilon_x = e/m E_x$ $\omega_y = e/m B_y$ $\varepsilon_y = e/m E_y$ $\omega_z = e/m B_z$ $\varepsilon_z = e/m E_z$

$$\vec{u} = M^{-1}\varepsilon$$

$$a_{x} = 1 + \omega_{x}^{2} \tau^{2} \qquad b = \omega_{z} \tau + \omega_{x} \omega_{y} \tau^{2}$$

$$a_{y} = 1 + \omega_{y}^{2} \tau^{2} \qquad c = \omega_{x} \tau + \omega_{y} \omega_{z} \tau^{2}$$

$$a_{z} = 1 + \omega_{z}^{2} \tau^{2} \qquad d = \omega_{y} \tau + \omega_{z} \omega_{x} \tau^{2}$$

$$M^{-1} = \frac{\tau}{1 + \omega^{2} \tau^{2}} \begin{pmatrix} a_{x} & b & -d \\ -b & a_{y} & c \\ d & -c & a_{z} \end{pmatrix}$$

$$By letting \qquad \overline{E} = |\overline{E}|\hat{E}, \quad \overline{B} = |\overline{B}|\hat{B}$$

$$\overline{u} = \frac{e}{m} \tau |\overrightarrow{E}| \frac{1}{1 + \omega^{2} \tau^{2}} \left[\hat{E} + \omega \tau \left(\hat{E} \wedge \hat{B} \right) + \omega^{2} \tau^{2} \left(\hat{E} \bullet \hat{B} \right) \hat{B} \right]$$

PV Primorsko 20-26 June 2010

$$\vec{u} = \frac{e}{m}\tau |\vec{E}| \frac{1}{1+\omega^2\tau^2} \left[\stackrel{\wedge}{E} + \omega \tau \left(\stackrel{\wedge}{E} \stackrel{\wedge}{A} \stackrel{\wedge}{B} \right) + \omega^2 \tau^2 \left(\stackrel{\wedge}{E} \stackrel{\wedge}{B} \stackrel{\wedge}{B} \right) \stackrel{\wedge}{B} \right]$$

ωτ is a parameter that rules the drift : 1) ωτ = 0 (B=0) → u is parallel to E

$$\vec{u} = \frac{e}{m} \tau \vec{E} = \mu \vec{E} \Longrightarrow \mu = \frac{e}{m} \tau$$

For ωτ large compared to 1
 <u>The drift velocity is parallel to B</u>

3) If E*B=O (i.e. B and E are orthogonal) and for large $\omega \tau$ the drift velocity is parallel to the vector product of B and E

$$\omega^2 = \omega_x^2 + \omega_y^2 + \omega_z^2 = \left(\frac{e}{m}\right)^2 B^2$$

 μ is the mobility of the electron (ion) and can then be defined as the ratio between the drift velocity and the electric field when B is absent.

ANDMORE...DIFFUSION

Diffusion = the random drift of the particles from a high concentration region to a lower one.

If the diluent is steady the only mechanism of transport is the diffusion.

If it is in motion also a drag force adds.

Suppose to have a cloud of electrons created in A : if the gradient of concentration along x is different from O, there exists a net flux from A to B

$$A \circ a \circ a \to B$$

$$A \to B \to B$$

If the gradient of concentration is small the flux density is proportional to it \rightarrow Otherwise it is only the first term of a series Expansion \rightarrow

The diffusion equation is one of the numerous form of the transport equation:

Particles
$$\rightarrow$$

 $J_P = -D \frac{\partial C}{\partial x}$ m⁻²s⁻¹
 $Mass \rightarrow$
 $J_m = -D \frac{\partial C}{\partial x}$ kg/m²s
 $J_H = -\lambda \frac{\partial C}{\partial x}$ Joule/m²s
El. Charge \rightarrow $J_e = -\sigma \frac{\partial C}{\partial x}$ C/m²s
 $\delta something$ is called driving force:

 ∂x

(

the gradient of something creates the movement of something else)

More important for our goals is the 2nd Fick's law on diffusion

$$J_{x} = -D\frac{\partial C}{\partial x} \Rightarrow \frac{\partial J_{x}}{\partial x} = -D\frac{\partial^{2}C}{\partial x^{2}}$$

$$div\overline{J} = -\frac{\partial C}{\partial t}$$

$$\Rightarrow \frac{\partial C}{\partial t} = D(\frac{\partial^{2}C}{\partial x^{2}} + \frac{\partial^{2}C}{\partial y^{2}} + \frac{\partial^{2}C}{\partial z^{2}}) = D\nabla^{2}C$$

$$\frac{\partial C}{\partial t} = D\nabla^2 C$$

A Gaussian concentration that spreads out with time is the solution of this differential equation

$$C(x,t) = \frac{C_0}{\sigma(t)\sqrt{2\pi}} e^{-\frac{x^2}{2\sigma^2(t)}} \quad \sigma^2(t) = \sigma^2(0) + 2Dt \quad 10$$

If at a starting time the concentration is Gaussian, after some time t it remains Gaussian-like but with a bigger variance.

Lets go back to drift velocity \rightarrow

$$v = \mu E = \frac{L}{t} \to 2Dt = \frac{2DL}{\mu E}$$

so we have

$$\sigma_x^{2}(t) = 2Dt = \frac{2DL}{\mu E}$$

3D

If you want to have lower diffusion go to higher electric field (not always possible...)

$$C(r,t) = \left(\frac{1}{\sqrt{4\pi Dt}}\right)^3 e^{-\frac{r^2}{4Dt}} \quad r^2 = x^2 + y^2 + (z - ut)^2$$

The presence of an electronegative gas (or impurities) reduces the pulse height because it removes electrons.

Be
$$\lambda$$
 = the mean free path (= A/N_a $\sigma\rho$)

- v = the instantaneous velocity of the electron
- u = the drift velocity
- p = fraction of electronegative gas (%)
- h= attachment probability
- \rightarrow (v/ λ) = collision rate with molecules
- \rightarrow (v/ λ)p = collision rate with the electronegative gas
- \rightarrow h (v/ λ)p = attachment rate

We can so define a characteristic length related to the attachment:

attachment length = drift velocity times (attachment rate)⁻¹

Mean free path between attachment

 $\beta = 1/\lambda_c$ is the attachment coefficient

$$\begin{split} \lambda &= \frac{A}{N_a \sigma \rho}, \ v = \sqrt{\frac{2\varepsilon}{m}} \Rightarrow \\ \frac{1}{\beta} &= \lambda_c = \sqrt{\frac{m}{2\varepsilon}} \frac{uA}{N_a h \rho \sigma p} \end{split}$$

$$\frac{dn}{dx} = \beta n \Longrightarrow n(x) = n(0)e^{\int_{0}^{x} \beta dx}$$

 \rightarrow Attached electrons. This has to be taken into account when calculating the avalanche formation (see later)

Electron discharges in gas were studied by J.S. Townsend (Nature 62 (1900) 340) who started a collection of experiments that have been the basis of following studies. Experimental facts:

the current in a parallel plane chamber rises (at fixed p) with the electric field E=V/x
But critical behaviors (breakdown) were also known

$$i = i_0 e^{\alpha x}, \alpha = f(\frac{E}{p})$$

Up to know we have studied the problems related to the presence of diffusion and attachment... Let's now see the good things...suppose to have an electron drifting in a gas under the effect of an electric field..

 \rightarrow by drifting 1 cm into the gas it creates α new electrons (and +ve ions). So we can write that αdx is the number of new electrons creates by the first one in dx. \rightarrow The variation dn for n electrons drifting by dx is dn=n αdx from which we have

 $n(x) = n(0)e^{\int \alpha dx}$ [\alpha] = cm⁻¹ = average number of ionizing collisions in 1 cm;

 $\rightarrow \lambda = 1/\alpha$ = average distance between two ionizing collisions. Usually α is considered constant in all the calculations and exits the integral...(but this is not quite true..)

α= First Townsend coefficient

If we have an electronegative gas in the mixture (with β attachment coefficient) not all the electrons can reach the electrode because they are removed from the drifting swarm.

In the same way : dn = created electrons in dx - attached electrons in dx \rightarrow dn= α ndx - β ndx = (α - β)ndx \rightarrow $n(x) = n(0)e^{\int (\alpha - \beta)dx}$ $M = \frac{n(x)}{n(0)} = e^{\int (\alpha - \beta)dx}$

Effective first Townsend coefficient

GAS GAIN

Functional dependence of α

A collision produces ionization only if the work done by the electric field in Δx is greater than the atom ionization energy.

eE $\Delta x \ge e V_{ion} \rightarrow \Delta x \ge V_{ion}/E$ If $\mu = \Delta x/\lambda$ is the average number of collisions in Δx ($\lambda =$ mean free path) the probability of having , on average, one ionizing collision is $\mu e^{-\mu} \rightarrow$

 $(\Delta x/\lambda)e^{-(\Delta x/\lambda)}$ in the unity path $\rightarrow (1/\lambda)e^{-(Vion/\lambda E)}$ but $1/\lambda = Ap$ (p= gas pression) $\rightarrow \alpha = Ape^{-ApVion/E}$ or

$$\frac{\alpha}{p} = Ae^{\frac{B}{E/p}}$$

Korff Relation

FIRST TOWNSEND COEFFICIENT IN MIXTURES

Argon-Methane mixtures:

Data Set@	1	2	3	4	5	6	17	8	9	10	111
Percentage of Methane	0	1.96	16.6	32.4	44.8	55.6	65.4	74.0	82.2	93.3	100
A (cm ⁻¹ Torr ⁻¹)	2.8	3.1	2.7	2.3	5.8	38.3	68.0	1114	2373	2447	126 1
B (Vcm ⁻¹ Tom ⁻¹)	60.6	65.5	81.7	88.4	130.1	230.1	265.6	298.5	342.5	347 8	300.1
E/p*(Vcm ⁻¹ Tor ⁻¹)	11.8	15.8	19.7	22.1	26.8	32.8	35.5	36.8	38.4	38.9	40.8

$$\frac{\alpha}{P} = A e^{-B\frac{P}{E}}$$

A. Sharma and F. Sauli, Nucl. Instrum, Methods A334 (1993) 420

Secondary effects

To the primary process of ionizing collisions (controlled by the first Townsend coefficient α) several processes can follow that increase the formation of the avalanche. These effects are regulated by the 2nd Townsend coefficient η such that:

$$i = \frac{i_0 e^{\alpha d}}{1 - \eta (e^{\alpha d} - 1)}$$

For a particular value

$$\frac{d_s = \frac{1}{\alpha} \ln(\frac{1+\eta}{\eta})}{\eta}$$
 The current diverges and

Vs=Ed_s is the sparking potential

We go from the avalanche to the sparking regime: into the middle we can have a streamer regime...

<u>Streamer</u>

when the gain is greater than 10⁸ (Reather limit);

• the spatial charge produces an internal electric field opposite to the one applied and of the same magnitude, this in turn makes

 recombination of electrons and +ve ions which in turn makes

- production of UV photons that
- produce secondary avalanches

 $10^8 = e^{\alpha d} \Longrightarrow \alpha d \approx 18 \div 20$

Signal generation on the wire of a cylindrical detector

The signal on the anode is generated by <u>induction of the moving</u> charges inside the detector before the actual collection

Ramo's Therorem

Suppose a charge q is drifting with velocity v inside a cylindrical detector to which an electric field E has been applied. The induced current at the anode is $\vec{i} = -q\vec{E}_w\cdot\vec{v}$ E_w is the <u>weighting field</u> i.e. the electric field per unit voltage at the electrode.

PV Primorsko 20-26 June 2010

We consider the effect of a positive ions that is drifting toward the cathode:

$$E(r) = \frac{V}{r\ln(\frac{b}{a})} = E(a)\frac{a}{r} \Longrightarrow E_w = \frac{1}{r\ln(\frac{b}{a})}$$

The positive ion is moving along the field direction so that v and E are parallel.

$$v = \frac{dr}{dt} = \mu_{+}E = \mu_{+}E(a)\frac{a}{r}$$
$$i(r) = -q\frac{1}{r\ln(\frac{b}{a})}\mu_{+}E(a)\frac{a}{r} = -q\mu_{+}E(a)\frac{a}{r^{2}\ln(\frac{b}{a})}$$

32

To obtain i=i(t) we need to know the dynamic of the ion:

$$\frac{dr}{dt} = \mu_{+}E(r) = \mu_{+}E(a)\frac{a}{r} \Rightarrow rdr = \mu_{+}E(a)adt$$

$$\int_{a}^{r} r'dr' = \int_{0}^{t} \mu_{+}E(a)adt' \Rightarrow \frac{r^{2}}{2} - \frac{a^{2}}{2} = \mu_{+}E(a)at$$

$$r^{2} = a^{2} + 2\mu_{+}E(a)at = a^{2}(1 + \frac{2\mu_{+}E(a)}{a}t) = a^{2}(1 + \frac{t}{t_{0}})$$

with
$$t_0 = \frac{a}{2\mu_+ E(a)}$$

Characteristic time of the ion (order of ns)

$$i(r) = -q \frac{1}{r \ln(\frac{b}{a})} \mu_{+} E(a) \frac{a}{r} = -q \mu_{+} E(a) \frac{a}{r^{2} \ln(\frac{b}{a})}$$
$$\Rightarrow i(t) = -q \mu_{+} E(a) \frac{1}{a \ln(\frac{b}{a})} \frac{1}{(1 + \frac{t}{t_{0}})}$$
$$i_{m} = q \mu_{+} E(a) \frac{1}{a \ln(\frac{b}{a})} \Rightarrow \frac{i(t)}{i_{m}} = -\frac{1}{(1 + \frac{t}{t_{0}})}$$

33

If this current is integrated by a capacitor :

$$V(t) = \frac{1}{C} \int i(t) dt = -\frac{q}{2C \ln(\frac{b}{a})} \ln(1 + \frac{t}{t_0})$$

$$q = 10^{6} e_{0}$$
$$\frac{b}{a} = 500$$
$$t_{0} = 2ns$$

The induced charge is:

$$\frac{Q_i(t)}{q} = -\frac{1}{2\ln(\frac{b}{a})}\ln(1 + \frac{t}{t_0})$$

What happens for a parallel geometry?

$$e^{-}$$

Now v and E have opposite versus and

We have also a different $E_w = k/d$, k depending on the geometry and on the material of the electrodes...

$$i(t) = q(t)\frac{k}{d}v(t) = q_0 e^{\alpha v t}\frac{k}{d}v$$
$$Q_i(t) = \int i(t)dt = q_0\frac{k}{\alpha d}(e^{\alpha v t}-1) \approx q_0\frac{k}{\alpha d}e^{\alpha v t}$$

It is interesting to note that the ratio of the induced charge and the total charge inside the detector is

$$\frac{Q_i}{Q_{tot}} = \frac{k}{\alpha d}$$

Resistive Plate Counters (RPCs)

Why we need a semi conductive layer?

We want to see the induced signal into the pick-up strips (signal is affected by the surface resistivity of the semi conductive layer)

Why we need high (volume) resistivity electrodes ?

To localize the discharge that takes place inside the detector (better on this later on)

Only a limited area around the discharge remains inefficient to the next event

The same mechanism is also done by the gas mixture that contains iC_4H_{10} as a UV ghencher and SF_6 as electron guencher

Why Electrodes are "cured" with linseed oil ?

Linseed oil makes the surface smoother

The smoother the surface, the lower the intrinsic noise of the detector

Roughness measurements

Why Electrodes are "cured" with linseed oil ? (cntd)

Linseed oil as a UV quencher?

Olio di lino cotto 26/9/1997

$$A = \log_{10}(\frac{I_0}{I})$$

After aging with intense UV lamp

Working Regime

RPC work with a uniform E (4-5 kV/mm) in avalanche or streamer mode depending on the gas mixture and on the applications needs

A reminder from before...

<u>Streamer</u>

when the gain is greater than 10⁸ (Raether limit);

- the spatial charge produces an internal electric field opposite to the one applied and of the same magnitude, this in turn make
- recombination of electron and +ve ions which in turn makes
- production of UV photons that
- produce secondary avalanches

$10^8 = e^{\alpha d} \Longrightarrow \alpha d \approx 18 \div 20$

Induced signal:

 $i = -qE_w \cdot v$

 $Q_{tot} = \alpha d$

$$i(t) = q(t)\frac{k}{d}v(t) = q_0 e^{\alpha vt}\frac{k}{d}v(t)$$
$$Q_i(t) = \int i(t)dt = q_0\frac{k}{\alpha d}(e^{\alpha vt}-1) \approx q_0\frac{k}{\alpha d}e^{\alpha vt}$$

$$k = \frac{\varepsilon_r d}{n_g \varepsilon_r d + (n_g + 1)s}$$

- d = gap width
- ϵ_r = dielectric permettivity
- s = electrode width
- $n_g =$ number of gaps

These are average values → we have to consider also fluctuation on the <u>avalanche development</u> due to: -the number of cluster/event (Poissonian fluctuation) -the number of primary electrons/cluster -gain fluctuation (Polya or Furry distribution)

Avalanche development and fluctuation

$$P_{cl}(n_{cl} = k) = \frac{(g\lambda)^{k}}{k!} e^{-g\lambda}$$

$$P_{r}(n_{av} = n) = \left[\frac{n}{N}(1+9)\right]^{9} e^{\left[-\frac{n}{N}(1+9)\right]}$$

$$P_{r}(n_{av} = n) = \frac{1}{N} e^{-\frac{n}{N}}$$

$$P_{r}(n_{av} = n) = \frac{1}{N} e^{-\frac{n}{N}}$$

$$P_{r}(x_{av} = n) = \frac{1}{N} e^{-\frac{n}{N}}$$

How do we calculate the factor?

Following Ramo's theorem prescriptions we set to 1 V the potential of the electrode where we want to calculate the induced current (and ground the others)

$$V_{0} = 2V_{s} + V_{d} = 2V_{s} + Ed \quad (V_{0} = 1 \Longrightarrow E = E_{W})$$

$$1 = 2V_{s} + E_{W}d \qquad \mathcal{E}_{r}^{g}(\approx 1)E_{g} = \mathcal{E}_{r}E_{b}$$

$$E_{s} = \frac{E_{W}}{\mathcal{E}_{r}} = \frac{V_{s}}{s} \Longrightarrow V_{s} = \frac{E_{W}}{\mathcal{E}_{r}}s$$

$$1 = 2\frac{E_{W}}{\mathcal{E}_{r}}s + E_{W}d \qquad 1 = E_{W}d(\frac{\mathcal{E}_{r}d + 2s}{\mathcal{E}_{r}d})$$

$$E_{W} = \frac{1}{d} \times (\frac{\mathcal{E}_{r}d/s}{2 + \varepsilon d/s}) = \frac{k}{d} \qquad (n_{g} = 1)$$

Continuity of the normal component of the electrical flux density D

k= signal attenuation factor = $f(\varepsilon_r, geometry)$

Read-out geometry

"Common Read-out"

$$k = \frac{\varepsilon_r d \, / \, s}{2\varepsilon_r d \, / \, s + 3}$$

$$k = 2 \times \frac{\varepsilon_r d \, / \, s}{\varepsilon_r d \, / \, s + 2}$$

Pspice simulation

RPC induced signal

Double gap RPC efficiency to charged particles

Rate Capability

How particle rate affects RPCs operation

$$F = flux(\frac{part}{cm^2 s}), \ R = \rho \frac{b}{S}(\Omega), q = \frac{charge}{part}(\frac{C}{part})$$

$$\frac{part}{cm^2 s} \times \frac{charge}{part} = J = \frac{curr}{cm^2} = \frac{I}{S} = \frac{\Delta V}{RS} = \frac{\Delta V}{\rho b}$$

$$\Delta V = F \times q \times \rho \times 2b$$

 ΔV is the voltage drop across the RPC (gap + electrodes)

Es: RPCs@LHC : F=10 Hz/cm² (Barrel) ρ = 5 10¹⁰ Ω cm b=0.2 cm q=25 pC $\rightarrow \Delta V$ = 5 V OK!

Why we need high volume resistivity electrodes?

Since the recovery time is much higher than the discharge one once the electrons are collected at the anode they neutralize the corresponding +ve charges, the electric field goes to 0 and the discharge is locally quenched.

 \rightarrow During the discharge electrodes behave like a dielectric

How does the dielectric permittivity ϵ_r enter the physics of RPCs ?

A) First example (static): which is the voltage drop V_b on the bakelite plates ?

$$V_0 = 2V_b + V_g \qquad \qquad \mathcal{E}_r^g E_g = \mathcal{E}_r E_b$$

V₀

Continuity of the normal component of the electrical flux density D

d

$$V_{0} = 2s \frac{\varepsilon_{r}^{g} (\approx 1)E_{g}}{\varepsilon_{r}} + V_{g}$$
$$V_{0} = 2s \frac{V_{g}}{\varepsilon_{r}d} + V_{g} = \frac{2s + \varepsilon_{r}d}{\varepsilon_{r}d}V_{g}$$
$$V_{g} = \frac{\varepsilon_{r}d}{2s + \varepsilon_{r}d}V_{0}$$

s=d=2mm @ ε_r usually chosen as 4 to 7 for bakelite (see textbooks)

 $\varepsilon_r > 40 \parallel$ (and even greater)

 ϵ_r must be greater (when DC coupled)

 $V_g = (67\% \text{ to } 77\%) V_0$ Inverting the relation and allowing $V_a > 95\% V_0$ B) Second example (dynamic): which is the induced charge on a pick-up strip?

$$q_{ind} = \frac{q_e}{\eta d} k(\varepsilon_r) n_0 M \left[e^{\eta (d-x_0)} - 1 \right]$$

$$q_e \quad \text{Electron charge}$$

$$n_0 \quad \text{Nuber of initial electrons}$$

$$M \quad \text{Gain fluctuations}$$

$$x_0 \quad \text{Initial coordinate of the cluster}$$

$$\eta \quad \text{Effective townsend coefficient}$$

$$d \quad \text{Gap width}$$

$$k(\varepsilon_r) = \frac{\varepsilon_r d}{2s + \varepsilon_r d}$$

single cluster

This ε_r has a different value wrt that of the previous example

CaseA) $\varepsilon_r = \varepsilon_r (\omega \sim 0)$ B) $\varepsilon_r = \varepsilon_r (\omega \sim \text{optical limit})$ signal transient

Usual representation of dielectrics by lumped circuits equivalents

or combination

RELAXATION SPECTRA

Melaminic sample

T = 25 °C

"Melaminic" refers to the used resin for the electrodes production. Usually the exterior surfaces of a plate

Difficult to measure but $\mathbf{c}_{\mathbf{r}} @ 0 Hz$ (DC coupled) could be well fitted from 30 to 60 and even more

v (MHz)

Simple lumped circuit model

Phenolic sample $T = 23 \, {}^{\circ}C$

"Phenolic" refers to the used resin for the electrodes production. Usually the bulk of a plate

Simple lumped circuit model

We have measured ϵ_r for a phenolic sample over a frequency range of 10^8 Hz

 $Re(\varepsilon_r)$

E_S STATIC E₀₀ OPT. LIMIT

 τ_i relaxation time

$$Re(\epsilon_r) = \epsilon_{\infty} + \frac{1}{2}(\epsilon_s - \epsilon_{\infty})\left(1 - \frac{\sinh\{(1-\alpha)\ln(\omega\tau_0)\}}{\cosh\{(1-\alpha)\ln(\omega\tau_0)\} + \sin(\frac{\alpha\pi}{2})}\right)$$

$$Im(\epsilon_r) = \frac{1}{2}(\epsilon_s - \epsilon_\infty)\left(\frac{\cos(\frac{\alpha\pi}{2})}{\cosh\{(1-\alpha)\ln(\omega\tau_0)\} + \sin(\frac{\alpha\pi}{2})}\right) - \frac{K}{\omega},$$

The preceding results can be explained through the following Equivalent lumped circuit of a bakelite cell. The three RC series elements represent three different relaxation processes :

DC behaviour and conductivity losses

Ideal capacitor at high frequency

Now let's go back to the initial question and recalculate V_g with the new value (26.5) of ε_s

$$V_g = \frac{\varepsilon_r d}{2s + \varepsilon_r d} V_0$$
$$V_g \cong 0.93 V_0$$

(vs 0.67-0.77)

However. the presence of $R_{d.c.}$ which is many order of magnitude lower than the gas resistence makes this ratio close to 1 and all the external voltage is thus transferred to the gas gap.

RPC aging issues: production of F

The multigap concept Williams (1996)

A stack of resistive plates kept electrically floating between two outer (resistive) cathode and anode

flow. So they take the correct voltage

The induced signal is the analogue sum of the signals from each gap. Each avalanche has the same time development since "feels" the same electric field.

[Williams 99]

Townsend coeff much more higher than RPCs so one expect much more charge, but this is not the case ... important for MRPC are space charge and/or recombination effects on the avalanche saturation...We are not discussing this item here...

Neutron Sensitivity of RPCs

Monte Carlo

Fig. 7. Neutron sensitivity as a function of the shielding composition for gap I (\bullet), gap II (\bigcirc) and double gap (\blacktriangle).

Data at 2 MeV

Neutrons can directly interact with RPC materials and with the gas

(link to a) Brief (not comprehensive) history of Parallel Plate Detectors

Bibliography

- Ionization chambers and counters; D.H.Wilkinson (Cambridge Univ. Press, 1950)
- Electron and nuclear counters; S.A. Korff (Van Nostrand, NY 1955)
- Electron avalanches and breakdown in gases; H. Raether (Butterworth, London 1964)
- Spark, Streamer, Proportional and drift chambers; P.Rice-Evans (Richelieu, London 1974)
- Principles of operation of multiwire proportional and drift chambers; F.Sauli (CERN 77-09 1977)
- Radiation detection and measurements; G.F. Knoll (Wiley, New York 2003)
- Techniques for nuclear and Particle Physics experiments; W.R.Leo (Springer, 1994)
- Particle detection with drift chambers; W.Blum, L.Rolandi (Springer, 1994)