Symbols

A	surface area of foam or foam film
$A_{\mathbf{i}}$	Initial area of foam film
$A_{ m s}$	cross-sectional area of foam film
$A^{\mathbf{f}}$	area of liquid film
а	activity of solute
$a_{ m h}$	effective head group area of surfactant
$a_{\rm c}$	condensation coefficient
B_{c}	film breaking coefficient
B, B_1, B_3, B_4	proportionality constants
C	concentration
$C_{ m s}$	surfactant concentration in solution
$C_{ m el}$	electrolyte concentration in solution
$C_{ m el,cr}$	critical electrolyte concentration
C_{b}	concentration of black spot formation
$C_{ m NBF}$	critical surfactant concentration for Newton black film formation
C_{e}	equilibrium surfactant concentration of Newton black film stability
C_{max}	maximum surfactant concentration (for bubble coalescence)
C_{PB}	transitional electrolyte concentration (Prince and Blanch)
D	diffusion coefficient of surfactant molecules in bulk solution
$D_{ m g}$	diffusion coefficient of gas from a shrinking bubble
$D_{ m f}$	diffusion coefficient of gas
$D_{ m eff}$	effective diffusion coefficient of gas
$D_{ m w}$	diffusion coefficient of gas through aqueous core of thin film
$D_{ m s}$	surface diffusion coefficient
$D_{ m v}$	coefficient of vacancy diffusion in an amphiphile bilayer
d	bubble diameter
$d_{ m eq}$	bubble equivalent diameter
$d_{ m v}$	bubble vertical diameter
$d_{ m h}$	bubble horizontal diameter
dx	small change in distance caused by stretching liquid film
$E_{ m g}$	Gibbs coefficient of surface elasticity
E_{a}	activation energy
$E_{\rm c}$	entry coefficient
$E_{ m g}$	generalized entry coefficient

 $k_{\rm f}$

E^*	complex dilational visco-elastic modulus
E'	real part of E^* (storage modulus)
$E^{\prime\prime}$	imaginary part of E^* (the loss modulus)
F	force
F_{b}	buoyancy force
$F_{ m s}$	force associated with surface tension
$F_{\mathbf{c}}$	capillary attachment force during bubble nucleation
$F_{ m p}$	foam production under sparging
$F_{ m p^*}$	foam production under agitation
$G_{ m ad}$	adsorption energy
G	Gibbs coefficient of elasticity
$H_{ m i}$	initial foam height
$H_{ m r}$	residual foam height
$H_{ m f}$	foam height
$H_{ m equ}$	equilibrium foam height (Bikerman test)
$H_{ m of}$	immersion depth of orifice tube
$H_{ m og}$	Oswald coefficient of gas solubility
h	thickness of liquid foam film
$h_{ m i}$	initial thickness of foam film
$h_{ m t}$	final thickness of foam
$h_{ m tr}$	transitional thickness of foam film
$h_{ m F}$	height of foam as defined in test method
$h_{ m s}$	height of solution as defined in test method
$h_{ m st}$	thickness change due to loss of stability
$h_{ m m}$	minimum film thickness for bubble coalescence
$h_{ m w}$	thickness of aqueous thin film core
$h_{ m ml}$	thickness of adsorbed monolayer adsorbed on thin film
$h_{ m w}$	equivalent thickness of a liquid film
$h_{\rm cr}$	critical thickness of film rupture
$h_{ m cr,bl}$	critical thickness of film rupture via black spots formation
J	diffusion and transfer of soluble surfactant to bubble interface
$J_{ m s}$	flow of surfactant along surface of bubble
$K_{\rm n}$	equilibrium constant for dissociation of mono-species into aggregates
K	gas permeability
$K_{ m m}$	diffusion coefficient
$K_{ m f}$	electro-conductivity of foam
$K_{ m s}$	specific conductivity of foam
$K_{ m dc}$	ratio of foam drainage time to coarsening time $(t_{\rm dr}/t_{\rm c})$
$k_{ m f}$	gas permeability of monoatomic and diatomic atoms
$k_{\rm n}^{\rm o}$	dimensionless permeability
$k_{\rm o}$	coefficient of background permeability
$k_{\rm ml}$	diffusion coefficient of single surfactant monolayer
$k_{\rm s}$	specific electrical conductivity of bulk solution
-	

electroconductivity of foam

K_{c}	dimensionless number (PB permeability)
$k_{ m eff}$	effective coefficient of gas transfer
$L_{ m pb}$	Poisson border length (foam structure)
$\stackrel{\text{po}}{L}$	length of foam train (permeability model)
l_{t}	length of foam film
$l_{\rm c}$	length of surfactant hydrocarbon chain
$N_{ m f}$	number of flips in Hele-Shaw cell
n	number of bubbles
n_{f}	intervening films in foam train model (standing diffusion model)
$\stackrel{\cdot}{P}$	pressure
P_1	liquid pressure
$P_{ m g}$	gas pressure
$P_{ m B}^{\circ}$	Laplace pressure in Plateau borders
$P_{\rm c}$	capillary pressure
$P_{\rm c}^{\rm \ max}$	maximum value of the capillary pressure
$P_{ m f}$	packing parameter for solid particles at bubble surface
Q_1	liquid flow rate
$Q_{ m g}$	gas flow rate (cm ³ /s)
$R_{\rm b}$	radius of bubble
$R_{ m pb}$	Poisson Boltzman curvature (foam structure)
$R_{\rm t}$	radius of shrinking bubble
$R_{ m f}$	radius of film curvature
$r_{\rm b}$	radius of bubble or a microscopic film
$r_{ m equiv}$	equivalent sphere radius
$r_{\rm o}$	radius of orifice
$r_{ m f}$	film radius
$R_{ m g}$	radius of gyration
$S_{ m o}$	solubility of gas in liquid
$S_{ m c}$	spreading coefficient
T	absolute temperature
$T_{ m c}$	cycle of period $1/f$
$T_{\rm d}$	drainage time of thin liquid film between two discs
T_{TR}	Threshold of entry barrier
t	time
$t_{ m d}$	coalescence time (MTR theory)
$t_{ m s}$	thin film stability time
$t_{ m b}$	thin film breakage time
$t_{ m in}$	thin film inertia time
$t_{ m att}$	attachment time (particle and bubble interaction)
$t_{ m i}$	induction time (particle and bubble interaction)
$t_{ m r}$	thin film rupture time (particle and bubble interaction)
$t_{ m tpc}$	three-phase contact time (particle and bubble interaction)
$t_{ m p}$	bubble transition or persistence time (coalescence)

time of deviation (foam test methods)

 $t_{\rm dev}$

 $t_{\rm tr}$ time of transition (foam test methods) $t_{1/2}$ half-life of foam (foam test methods)

 $t_{\rm dr}$ drainage time

t_c foam coarsening time

V volume of gas V_b volume of bubble V_o initial foam volume V_i initial volume of foam

 $\Delta V^{\rm F}$ change if foam volume (foam test methods)

 $\Delta V^{\rm S}$ change in volume of drained liquid (foam test methods)

V_h volume of hydrocarbon chain

 $V_{\rm end}$ final volume of foam produced (surfactant depletion experiments)

 $V_{\rm d}$ foam decay rate

 $V_{
m sgf}$ superficial gas flow rate $V_{
m L}$ liquid drainage velocity $V_{
m ab}$ bubble approach velocity

 V_{Re} Stefan-Reynolds drainage rate between two discs

 $V_{\rm FD}$ forced drainage velocity $K_{\rm p}$ bubble persistence constant

 $j_{\rm g}$ superficial gas flow (humidity and evaporation) $K_{\rm H}$ Hilgenfeldt ratio of drainage time to coarsening

v liquid flow velocity

 $V_{\rm av}$ average approach velocity between two bubbles

 $V_{\rm brs}$ bubble rise velocity

 $\begin{array}{lll} V_{\rm ch} & & {\rm bubble\ approach\ velocity\ (Chester\ Hofman)} \\ V_k & & {\rm bubble\ approach\ velocity\ (Klaseboer)} \\ V_{\rm yl}, V_{\rm yl} & & {\rm bubble\ approach\ velocity\ (Yaminsky)} \\ V_{\rm cav} & & {\rm critical\ bubble\ approach\ velocity} \\ U & & {\rm average\ rate\ of\ foam\ decay} \\ U_{\rm g} & & {\rm superficial\ gas\ flow\ rate\ (m/s)} \\ U_{\rm term} & & {\rm terminal\ velocity\ of\ bubble} \\ \end{array}$

 $U_{\rm max}$ maximum velocity of bubble $U_{\rm d}$ foam decay rate

W work

Weber number

 $W_{\rm cr}$ critical value of Weber number

W volume % liquid content of foam (foam test methods)

 W_1 volume % liquid content of foam (conductivity test methods)

 W_1 width of liquid inlet channel in microfluidic cell W_g width of gas inlet channel in microfluidic cell x, y coordinates in direction to the interface

z coordinate normal to the interface

 β dynamic contact angle

 Γ adsorption, surface concentration

 Γ_{∞} maximum adsorption, surface concentration

 Γ surface excess (adsorbed) Γ_R relative adsorption

 $\Gamma_{\rm max}$ maximum amount of coverage of surfactant

γ surface or interfacial tension

 $\gamma_{\rm o}$ surface or interfacial tension of a pure solvent system

 $\gamma_{\rm dyn}$ dynamic surface tension $\gamma_{\rm equ}$ equilibrium surface tension

 η dynamic viscosity

 $\eta_{\rm d}$ surface dilational viscosity $\eta_{\rm sh}$ surface shear viscosity $\eta_{\rm d}$ viscosity of dispersion $\eta_{\rm o}$ viscosity of liquid matrix $1/\kappa$ Debye screening length

λ characteristic tube width to bubble radius

 Π disjoining pressure

 $\Pi_{\rm el}$ electrostatic component of the disjoining pressure $\Pi_{\rm vw}$ van der Waals component of the disjoining pressure

 $\Pi_{\rm st}$ steric component of the disjoining pressure $\Pi_{\rm osc}$ oscillatory component of the disjoining pressure

 ho_1 density of liquid density of gas

 ρ_{R} ratio density (wet and dry foam) \sum Bikermann unit of foaminess τ micellar break-up time

 $au_{1/2}$ lifetime of a foam film or foam heta equilibrium contact angle

 Φ_1 volume fraction of liquid or wetness of foam

 $\Phi_{\rm g}$ volume fraction of gas fraction

 $\Phi_{\rm g,critical}$ critical gas fraction

 $\varphi_{\rm s}$ volume fraction of dispersed solid χ bubble shape deformation factor

 ω angular frequency $\Psi_{\rm o}$ surface potential

Constants

A_H Hamaker constant

A_R retarded Hamaker constant

F Faraday constant g gravitational constant $k_{\rm B}$ Boltzmann constant $K_{\rm n}$ dissociation constant

 $N_{\rm A}$ Avogadro number $R_{\rm g}$ ideal gas constant $R_{\rm e}$ Reynolds number T absolute temperature

Abbreviations

BCP	block copolymer
CBF	common black film

CMC critical micelle concentration CPP critical packing parameter

DLVO Derjaguin, Landau, Verwey, Overbeek theory

FTT film trapping technique

HLB hydrophilic/lyphophile balance MTR Manev-Tsekov-Radoev theory

NBF Newton black film POE polyethylene oxide RH relative humidity

WP Weaire-Phelan (foam cell structure)